Step |
Hyp |
Ref |
Expression |
1 |
|
dgradd.1 |
|
2 |
|
dgradd.2 |
|
3 |
1 2
|
dgrmul2 |
|
4 |
3
|
ad2ant2r |
|
5 |
|
plymulcl |
|
6 |
5
|
ad2ant2r |
|
7 |
|
dgrcl |
|
8 |
1 7
|
eqeltrid |
|
9 |
8
|
ad2antrr |
|
10 |
|
dgrcl |
|
11 |
2 10
|
eqeltrid |
|
12 |
11
|
ad2antrl |
|
13 |
9 12
|
nn0addcld |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 15 1 2
|
coemulhi |
|
17 |
16
|
ad2ant2r |
|
18 |
14
|
coef3 |
|
19 |
18
|
ad2antrr |
|
20 |
19 9
|
ffvelrnd |
|
21 |
15
|
coef3 |
|
22 |
21
|
ad2antrl |
|
23 |
22 12
|
ffvelrnd |
|
24 |
1 14
|
dgreq0 |
|
25 |
24
|
necon3bid |
|
26 |
25
|
biimpa |
|
27 |
26
|
adantr |
|
28 |
2 15
|
dgreq0 |
|
29 |
28
|
necon3bid |
|
30 |
29
|
biimpa |
|
31 |
30
|
adantl |
|
32 |
20 23 27 31
|
mulne0d |
|
33 |
17 32
|
eqnetrd |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34 35
|
dgrub |
|
37 |
6 13 33 36
|
syl3anc |
|
38 |
|
dgrcl |
|
39 |
6 38
|
syl |
|
40 |
39
|
nn0red |
|
41 |
13
|
nn0red |
|
42 |
40 41
|
letri3d |
|
43 |
4 37 42
|
mpbir2and |
|