Metamath Proof Explorer


Theorem dgrmul

Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses dgradd.1 M = deg F
dgradd.2 N = deg G
Assertion dgrmul F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G = M + N

Proof

Step Hyp Ref Expression
1 dgradd.1 M = deg F
2 dgradd.2 N = deg G
3 1 2 dgrmul2 F Poly S G Poly S deg F × f G M + N
4 3 ad2ant2r F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G M + N
5 plymulcl F Poly S G Poly S F × f G Poly
6 5 ad2ant2r F Poly S F 0 𝑝 G Poly S G 0 𝑝 F × f G Poly
7 dgrcl F Poly S deg F 0
8 1 7 eqeltrid F Poly S M 0
9 8 ad2antrr F Poly S F 0 𝑝 G Poly S G 0 𝑝 M 0
10 dgrcl G Poly S deg G 0
11 2 10 eqeltrid G Poly S N 0
12 11 ad2antrl F Poly S F 0 𝑝 G Poly S G 0 𝑝 N 0
13 9 12 nn0addcld F Poly S F 0 𝑝 G Poly S G 0 𝑝 M + N 0
14 eqid coeff F = coeff F
15 eqid coeff G = coeff G
16 14 15 1 2 coemulhi F Poly S G Poly S coeff F × f G M + N = coeff F M coeff G N
17 16 ad2ant2r F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F × f G M + N = coeff F M coeff G N
18 14 coef3 F Poly S coeff F : 0
19 18 ad2antrr F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F : 0
20 19 9 ffvelrnd F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F M
21 15 coef3 G Poly S coeff G : 0
22 21 ad2antrl F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff G : 0
23 22 12 ffvelrnd F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff G N
24 1 14 dgreq0 F Poly S F = 0 𝑝 coeff F M = 0
25 24 necon3bid F Poly S F 0 𝑝 coeff F M 0
26 25 biimpa F Poly S F 0 𝑝 coeff F M 0
27 26 adantr F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F M 0
28 2 15 dgreq0 G Poly S G = 0 𝑝 coeff G N = 0
29 28 necon3bid G Poly S G 0 𝑝 coeff G N 0
30 29 biimpa G Poly S G 0 𝑝 coeff G N 0
31 30 adantl F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff G N 0
32 20 23 27 31 mulne0d F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F M coeff G N 0
33 17 32 eqnetrd F Poly S F 0 𝑝 G Poly S G 0 𝑝 coeff F × f G M + N 0
34 eqid coeff F × f G = coeff F × f G
35 eqid deg F × f G = deg F × f G
36 34 35 dgrub F × f G Poly M + N 0 coeff F × f G M + N 0 M + N deg F × f G
37 6 13 33 36 syl3anc F Poly S F 0 𝑝 G Poly S G 0 𝑝 M + N deg F × f G
38 dgrcl F × f G Poly deg F × f G 0
39 6 38 syl F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G 0
40 39 nn0red F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G
41 13 nn0red F Poly S F 0 𝑝 G Poly S G 0 𝑝 M + N
42 40 41 letri3d F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G = M + N deg F × f G M + N M + N deg F × f G
43 4 37 42 mpbir2and F Poly S F 0 𝑝 G Poly S G 0 𝑝 deg F × f G = M + N