Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
fveq2d |
|
3 |
|
fveq2 |
|
4 |
|
dgr0 |
|
5 |
3 4
|
eqtrdi |
|
6 |
2 5
|
eqeq12d |
|
7 |
|
ssid |
|
8 |
|
simpl1 |
|
9 |
|
plyconst |
|
10 |
7 8 9
|
sylancr |
|
11 |
|
0cn |
|
12 |
|
fvconst2g |
|
13 |
8 11 12
|
sylancl |
|
14 |
|
simpl2 |
|
15 |
13 14
|
eqnetrd |
|
16 |
|
ne0p |
|
17 |
11 15 16
|
sylancr |
|
18 |
|
plyssc |
|
19 |
|
simpl3 |
|
20 |
18 19
|
sselid |
|
21 |
|
simpr |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
22 23
|
dgrmul |
|
25 |
10 17 20 21 24
|
syl22anc |
|
26 |
|
0dgr |
|
27 |
8 26
|
syl |
|
28 |
27
|
oveq1d |
|
29 |
|
dgrcl |
|
30 |
19 29
|
syl |
|
31 |
30
|
nn0cnd |
|
32 |
31
|
addid2d |
|
33 |
25 28 32
|
3eqtrd |
|
34 |
|
cnex |
|
35 |
34
|
a1i |
|
36 |
|
simp1 |
|
37 |
11
|
a1i |
|
38 |
35 36 37
|
ofc12 |
|
39 |
36
|
mul01d |
|
40 |
39
|
sneqd |
|
41 |
40
|
xpeq2d |
|
42 |
38 41
|
eqtrd |
|
43 |
|
df-0p |
|
44 |
43
|
oveq2i |
|
45 |
42 44 43
|
3eqtr4g |
|
46 |
45
|
fveq2d |
|
47 |
46 4
|
eqtrdi |
|
48 |
6 33 47
|
pm2.61ne |
|