| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | fveq2d |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 |  | dgr0 |  | 
						
							| 5 | 3 4 | eqtrdi |  | 
						
							| 6 | 2 5 | eqeq12d |  | 
						
							| 7 |  | ssid |  | 
						
							| 8 |  | simpl1 |  | 
						
							| 9 |  | plyconst |  | 
						
							| 10 | 7 8 9 | sylancr |  | 
						
							| 11 |  | 0cn |  | 
						
							| 12 |  | fvconst2g |  | 
						
							| 13 | 8 11 12 | sylancl |  | 
						
							| 14 |  | simpl2 |  | 
						
							| 15 | 13 14 | eqnetrd |  | 
						
							| 16 |  | ne0p |  | 
						
							| 17 | 11 15 16 | sylancr |  | 
						
							| 18 |  | plyssc |  | 
						
							| 19 |  | simpl3 |  | 
						
							| 20 | 18 19 | sselid |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 22 23 | dgrmul |  | 
						
							| 25 | 10 17 20 21 24 | syl22anc |  | 
						
							| 26 |  | 0dgr |  | 
						
							| 27 | 8 26 | syl |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 |  | dgrcl |  | 
						
							| 30 | 19 29 | syl |  | 
						
							| 31 | 30 | nn0cnd |  | 
						
							| 32 | 31 | addlidd |  | 
						
							| 33 | 25 28 32 | 3eqtrd |  | 
						
							| 34 |  | cnex |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 |  | simp1 |  | 
						
							| 37 | 11 | a1i |  | 
						
							| 38 | 35 36 37 | ofc12 |  | 
						
							| 39 | 36 | mul01d |  | 
						
							| 40 | 39 | sneqd |  | 
						
							| 41 | 40 | xpeq2d |  | 
						
							| 42 | 38 41 | eqtrd |  | 
						
							| 43 |  | df-0p |  | 
						
							| 44 | 43 | oveq2i |  | 
						
							| 45 | 42 44 43 | 3eqtr4g |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 4 | eqtrdi |  | 
						
							| 48 | 6 33 47 | pm2.61ne |  |