Metamath Proof Explorer


Theorem dgrmulc

Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion dgrmulc A A 0 F Poly S deg × A × f F = deg F

Proof

Step Hyp Ref Expression
1 oveq2 F = 0 𝑝 × A × f F = × A × f 0 𝑝
2 1 fveq2d F = 0 𝑝 deg × A × f F = deg × A × f 0 𝑝
3 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
4 dgr0 deg 0 𝑝 = 0
5 3 4 eqtrdi F = 0 𝑝 deg F = 0
6 2 5 eqeq12d F = 0 𝑝 deg × A × f F = deg F deg × A × f 0 𝑝 = 0
7 ssid
8 simpl1 A A 0 F Poly S F 0 𝑝 A
9 plyconst A × A Poly
10 7 8 9 sylancr A A 0 F Poly S F 0 𝑝 × A Poly
11 0cn 0
12 fvconst2g A 0 × A 0 = A
13 8 11 12 sylancl A A 0 F Poly S F 0 𝑝 × A 0 = A
14 simpl2 A A 0 F Poly S F 0 𝑝 A 0
15 13 14 eqnetrd A A 0 F Poly S F 0 𝑝 × A 0 0
16 ne0p 0 × A 0 0 × A 0 𝑝
17 11 15 16 sylancr A A 0 F Poly S F 0 𝑝 × A 0 𝑝
18 plyssc Poly S Poly
19 simpl3 A A 0 F Poly S F 0 𝑝 F Poly S
20 18 19 sselid A A 0 F Poly S F 0 𝑝 F Poly
21 simpr A A 0 F Poly S F 0 𝑝 F 0 𝑝
22 eqid deg × A = deg × A
23 eqid deg F = deg F
24 22 23 dgrmul × A Poly × A 0 𝑝 F Poly F 0 𝑝 deg × A × f F = deg × A + deg F
25 10 17 20 21 24 syl22anc A A 0 F Poly S F 0 𝑝 deg × A × f F = deg × A + deg F
26 0dgr A deg × A = 0
27 8 26 syl A A 0 F Poly S F 0 𝑝 deg × A = 0
28 27 oveq1d A A 0 F Poly S F 0 𝑝 deg × A + deg F = 0 + deg F
29 dgrcl F Poly S deg F 0
30 19 29 syl A A 0 F Poly S F 0 𝑝 deg F 0
31 30 nn0cnd A A 0 F Poly S F 0 𝑝 deg F
32 31 addid2d A A 0 F Poly S F 0 𝑝 0 + deg F = deg F
33 25 28 32 3eqtrd A A 0 F Poly S F 0 𝑝 deg × A × f F = deg F
34 cnex V
35 34 a1i A A 0 F Poly S V
36 simp1 A A 0 F Poly S A
37 11 a1i A A 0 F Poly S 0
38 35 36 37 ofc12 A A 0 F Poly S × A × f × 0 = × A 0
39 36 mul01d A A 0 F Poly S A 0 = 0
40 39 sneqd A A 0 F Poly S A 0 = 0
41 40 xpeq2d A A 0 F Poly S × A 0 = × 0
42 38 41 eqtrd A A 0 F Poly S × A × f × 0 = × 0
43 df-0p 0 𝑝 = × 0
44 43 oveq2i × A × f 0 𝑝 = × A × f × 0
45 42 44 43 3eqtr4g A A 0 F Poly S × A × f 0 𝑝 = 0 𝑝
46 45 fveq2d A A 0 F Poly S deg × A × f 0 𝑝 = deg 0 𝑝
47 46 4 eqtrdi A A 0 F Poly S deg × A × f 0 𝑝 = 0
48 6 33 47 pm2.61ne A A 0 F Poly S deg × A × f F = deg F