Metamath Proof Explorer


Theorem dicssdvh

Description: The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014)

Ref Expression
Hypotheses dicssdvh.l ˙ = K
dicssdvh.a A = Atoms K
dicssdvh.h H = LHyp K
dicssdvh.i I = DIsoC K W
dicssdvh.u U = DVecH K W
dicssdvh.v V = Base U
Assertion dicssdvh K HL W H Q A ¬ Q ˙ W I Q V

Proof

Step Hyp Ref Expression
1 dicssdvh.l ˙ = K
2 dicssdvh.a A = Atoms K
3 dicssdvh.h H = LHyp K
4 dicssdvh.i I = DIsoC K W
5 dicssdvh.u U = DVecH K W
6 dicssdvh.v V = Base U
7 simprl K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W f = s ι g LTrn K W | g oc K W = Q
8 simpll K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W K HL W H
9 simprr K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W s TEndo K W
10 eqid oc K = oc K
11 1 10 2 3 lhpocnel K HL W H oc K W A ¬ oc K W ˙ W
12 11 ad2antrr K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W oc K W A ¬ oc K W ˙ W
13 simplr K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W Q A ¬ Q ˙ W
14 eqid LTrn K W = LTrn K W
15 eqid ι g LTrn K W | g oc K W = Q = ι g LTrn K W | g oc K W = Q
16 1 2 3 14 15 ltrniotacl K HL W H oc K W A ¬ oc K W ˙ W Q A ¬ Q ˙ W ι g LTrn K W | g oc K W = Q LTrn K W
17 8 12 13 16 syl3anc K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W ι g LTrn K W | g oc K W = Q LTrn K W
18 eqid TEndo K W = TEndo K W
19 3 14 18 tendocl K HL W H s TEndo K W ι g LTrn K W | g oc K W = Q LTrn K W s ι g LTrn K W | g oc K W = Q LTrn K W
20 8 9 17 19 syl3anc K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W s ι g LTrn K W | g oc K W = Q LTrn K W
21 7 20 eqeltrd K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W f LTrn K W
22 21 9 9 jca31 K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W f LTrn K W s TEndo K W s TEndo K W
23 22 ex K HL W H Q A ¬ Q ˙ W f = s ι g LTrn K W | g oc K W = Q s TEndo K W f LTrn K W s TEndo K W s TEndo K W
24 23 ssopab2dv K HL W H Q A ¬ Q ˙ W f s | f = s ι g LTrn K W | g oc K W = Q s TEndo K W f s | f LTrn K W s TEndo K W s TEndo K W
25 opabssxp f s | f LTrn K W s TEndo K W s TEndo K W LTrn K W × TEndo K W
26 24 25 sstrdi K HL W H Q A ¬ Q ˙ W f s | f = s ι g LTrn K W | g oc K W = Q s TEndo K W LTrn K W × TEndo K W
27 eqid oc K W = oc K W
28 1 2 3 27 14 18 4 dicval K HL W H Q A ¬ Q ˙ W I Q = f s | f = s ι g LTrn K W | g oc K W = Q s TEndo K W
29 3 14 18 5 6 dvhvbase K HL W H V = LTrn K W × TEndo K W
30 29 adantr K HL W H Q A ¬ Q ˙ W V = LTrn K W × TEndo K W
31 26 28 30 3sstr4d K HL W H Q A ¬ Q ˙ W I Q V