| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
encv |
|
| 3 |
2
|
simpld |
|
| 4 |
3
|
3anim1i |
|
| 5 |
|
bren |
|
| 6 |
|
sucidg |
|
| 7 |
|
f1ocnvdm |
|
| 8 |
7
|
3adant2 |
|
| 9 |
|
f1ofvswap |
|
| 10 |
8 9
|
syld3an3 |
|
| 11 |
|
f1ocnvfv2 |
|
| 12 |
11
|
opeq2d |
|
| 13 |
12
|
preq1d |
|
| 14 |
13
|
uneq2d |
|
| 15 |
14
|
f1oeq1d |
|
| 16 |
15
|
3adant2 |
|
| 17 |
10 16
|
mpbid |
|
| 18 |
6 17
|
syl3an3 |
|
| 19 |
18
|
3adant3r1 |
|
| 20 |
|
f1ofun |
|
| 21 |
|
opex |
|
| 22 |
21
|
prid1 |
|
| 23 |
|
elun2 |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
|
funopfv |
|
| 26 |
24 25
|
mpi |
|
| 27 |
19 20 26
|
3syl |
|
| 28 |
|
simpr2 |
|
| 29 |
|
f1ocnvfv |
|
| 30 |
19 28 29
|
syl2anc |
|
| 31 |
27 30
|
mpd |
|
| 32 |
31
|
sneqd |
|
| 33 |
32
|
difeq2d |
|
| 34 |
|
simpr1 |
|
| 35 |
|
3simpc |
|
| 36 |
35
|
anim2i |
|
| 37 |
|
3anass |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
34 38
|
jca |
|
| 40 |
|
simpl |
|
| 41 |
|
simpr3 |
|
| 42 |
40 41
|
jca |
|
| 43 |
|
simpr |
|
| 44 |
42 43
|
jca |
|
| 45 |
|
vex |
|
| 46 |
45
|
resex |
|
| 47 |
|
prex |
|
| 48 |
46 47
|
unex |
|
| 49 |
|
dif1enlem |
|
| 50 |
48 49
|
mp3anl1 |
|
| 51 |
18 50
|
sylan2 |
|
| 52 |
39 44 51
|
3syl |
|
| 53 |
33 52
|
eqbrtrrd |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
exlimiv |
|
| 56 |
5 55
|
sylbi |
|
| 57 |
1 4 56
|
sylc |
|
| 58 |
57
|
3comr |
|