Metamath Proof Explorer


Theorem dif1enlem

Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024) Generalize to all ordinals and add a sethood requirement to avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)

Ref Expression
Assertion dif1enlem F V A W M On F : A 1-1 onto suc M A F -1 M M

Proof

Step Hyp Ref Expression
1 sucidg M On M suc M
2 dff1o3 F : A 1-1 onto suc M F : A onto suc M Fun F -1
3 2 simprbi F : A 1-1 onto suc M Fun F -1
4 3 adantr F : A 1-1 onto suc M M suc M Fun F -1
5 f1ofo F : A 1-1 onto suc M F : A onto suc M
6 f1ofn F : A 1-1 onto suc M F Fn A
7 fnresdm F Fn A F A = F
8 foeq1 F A = F F A : A onto suc M F : A onto suc M
9 6 7 8 3syl F : A 1-1 onto suc M F A : A onto suc M F : A onto suc M
10 5 9 mpbird F : A 1-1 onto suc M F A : A onto suc M
11 10 adantr F : A 1-1 onto suc M M suc M F A : A onto suc M
12 6 adantr F : A 1-1 onto suc M M suc M F Fn A
13 f1ocnvdm F : A 1-1 onto suc M M suc M F -1 M A
14 f1ocnvfv2 F : A 1-1 onto suc M M suc M F F -1 M = M
15 snidg M suc M M M
16 15 adantl F : A 1-1 onto suc M M suc M M M
17 14 16 eqeltrd F : A 1-1 onto suc M M suc M F F -1 M M
18 fressnfv F Fn A F -1 M A F F -1 M : F -1 M M F F -1 M M
19 18 biimp3ar F Fn A F -1 M A F F -1 M M F F -1 M : F -1 M M
20 12 13 17 19 syl3anc F : A 1-1 onto suc M M suc M F F -1 M : F -1 M M
21 disjsn A F -1 M = ¬ F -1 M A
22 21 con2bii F -1 M A ¬ A F -1 M =
23 13 22 sylib F : A 1-1 onto suc M M suc M ¬ A F -1 M =
24 fnresdisj F Fn A A F -1 M = F F -1 M =
25 6 24 syl F : A 1-1 onto suc M A F -1 M = F F -1 M =
26 25 adantr F : A 1-1 onto suc M M suc M A F -1 M = F F -1 M =
27 23 26 mtbid F : A 1-1 onto suc M M suc M ¬ F F -1 M =
28 27 neqned F : A 1-1 onto suc M M suc M F F -1 M
29 foconst F F -1 M : F -1 M M F F -1 M F F -1 M : F -1 M onto M
30 20 28 29 syl2anc F : A 1-1 onto suc M M suc M F F -1 M : F -1 M onto M
31 resdif Fun F -1 F A : A onto suc M F F -1 M : F -1 M onto M F A F -1 M : A F -1 M 1-1 onto suc M M
32 4 11 30 31 syl3anc F : A 1-1 onto suc M M suc M F A F -1 M : A F -1 M 1-1 onto suc M M
33 1 32 sylan2 F : A 1-1 onto suc M M On F A F -1 M : A F -1 M 1-1 onto suc M M
34 eloni M On Ord M
35 orddif Ord M M = suc M M
36 34 35 syl M On M = suc M M
37 36 f1oeq3d M On F A F -1 M : A F -1 M 1-1 onto M F A F -1 M : A F -1 M 1-1 onto suc M M
38 37 adantl F : A 1-1 onto suc M M On F A F -1 M : A F -1 M 1-1 onto M F A F -1 M : A F -1 M 1-1 onto suc M M
39 33 38 mpbird F : A 1-1 onto suc M M On F A F -1 M : A F -1 M 1-1 onto M
40 39 ancoms M On F : A 1-1 onto suc M F A F -1 M : A F -1 M 1-1 onto M
41 40 3ad2antl3 F V A W M On F : A 1-1 onto suc M F A F -1 M : A F -1 M 1-1 onto M
42 difexg A W A F -1 M V
43 resexg F V F A F -1 M V
44 f1oen4g F A F -1 M V A F -1 M V M On F A F -1 M : A F -1 M 1-1 onto M A F -1 M M
45 43 44 syl3anl1 F V A F -1 M V M On F A F -1 M : A F -1 M 1-1 onto M A F -1 M M
46 42 45 syl3anl2 F V A W M On F A F -1 M : A F -1 M 1-1 onto M A F -1 M M
47 41 46 syldan F V A W M On F : A 1-1 onto suc M A F -1 M M