Metamath Proof Explorer


Theorem difcom

Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)

Ref Expression
Assertion difcom A B C A C B

Proof

Step Hyp Ref Expression
1 uncom B C = C B
2 1 sseq2i A B C A C B
3 ssundif A B C A B C
4 ssundif A C B A C B
5 2 3 4 3bitr3i A B C A C B