Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
difcom
Next ⟩
pssdifcom1
Metamath Proof Explorer
Ascii
Unicode
Theorem
difcom
Description:
Swap the arguments of a class difference.
(Contributed by
NM
, 29-Mar-2007)
Ref
Expression
Assertion
difcom
⊢
A
∖
B
⊆
C
↔
A
∖
C
⊆
B
Proof
Step
Hyp
Ref
Expression
1
uncom
⊢
B
∪
C
=
C
∪
B
2
1
sseq2i
⊢
A
⊆
B
∪
C
↔
A
⊆
C
∪
B
3
ssundif
⊢
A
⊆
B
∪
C
↔
A
∖
B
⊆
C
4
ssundif
⊢
A
⊆
C
∪
B
↔
A
∖
C
⊆
B
5
2
3
4
3bitr3i
⊢
A
∖
B
⊆
C
↔
A
∖
C
⊆
B