Metamath Proof Explorer


Theorem difdif

Description: Double class difference. Exercise 11 of TakeutiZaring p. 22. (Contributed by NM, 17-May-1998)

Ref Expression
Assertion difdif A B A = A

Proof

Step Hyp Ref Expression
1 pm4.45im x A x A x B x A
2 iman x B x A ¬ x B ¬ x A
3 eldif x B A x B ¬ x A
4 2 3 xchbinxr x B x A ¬ x B A
5 4 anbi2i x A x B x A x A ¬ x B A
6 1 5 bitr2i x A ¬ x B A x A
7 6 difeqri A B A = A