Metamath Proof Explorer


Theorem difdif2

Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)

Ref Expression
Assertion difdif2 A B C = A B A C

Proof

Step Hyp Ref Expression
1 difindi A B V C = A B A V C
2 invdif B V C = B C
3 2 eqcomi B C = B V C
4 3 difeq2i A B C = A B V C
5 dfin2 A C = A V C
6 5 uneq2i A B A C = A B A V C
7 1 4 6 3eqtr4i A B C = A B A C