Metamath Proof Explorer


Theorem difdifdir

Description: Distributive law for class difference. Exercise 4.8 of Stoll p. 16. (Contributed by NM, 18-Aug-2004)

Ref Expression
Assertion difdifdir A B C = A C B C

Proof

Step Hyp Ref Expression
1 dif32 A B C = A C B
2 invdif A C V B = A C B
3 1 2 eqtr4i A B C = A C V B
4 un0 A C V B = A C V B
5 3 4 eqtr4i A B C = A C V B
6 indi A C V B C = A C V B A C C
7 disjdif C A C =
8 incom C A C = A C C
9 7 8 eqtr3i = A C C
10 9 uneq2i A C V B = A C V B A C C
11 6 10 eqtr4i A C V B C = A C V B
12 5 11 eqtr4i A B C = A C V B C
13 ddif V V C = C
14 13 uneq2i V B V V C = V B C
15 indm V B V C = V B V V C
16 invdif B V C = B C
17 16 difeq2i V B V C = V B C
18 15 17 eqtr3i V B V V C = V B C
19 14 18 eqtr3i V B C = V B C
20 19 ineq2i A C V B C = A C V B C
21 invdif A C V B C = A C B C
22 12 20 21 3eqtri A B C = A C B C