Metamath Proof Explorer


Theorem difelfzle

Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018)

Ref Expression
Assertion difelfzle K 0 N M 0 N K M M K 0 N

Proof

Step Hyp Ref Expression
1 elfznn0 K 0 N K 0
2 elfznn0 M 0 N M 0
3 nn0z M 0 M
4 nn0z K 0 K
5 zsubcl M K M K
6 3 4 5 syl2anr K 0 M 0 M K
7 6 adantr K 0 M 0 K M M K
8 nn0re M 0 M
9 nn0re K 0 K
10 subge0 M K 0 M K K M
11 8 9 10 syl2anr K 0 M 0 0 M K K M
12 11 biimpar K 0 M 0 K M 0 M K
13 7 12 jca K 0 M 0 K M M K 0 M K
14 13 exp31 K 0 M 0 K M M K 0 M K
15 1 2 14 syl2im K 0 N M 0 N K M M K 0 M K
16 15 3imp K 0 N M 0 N K M M K 0 M K
17 elnn0z M K 0 M K 0 M K
18 16 17 sylibr K 0 N M 0 N K M M K 0
19 elfz3nn0 K 0 N N 0
20 19 3ad2ant1 K 0 N M 0 N K M N 0
21 elfz2nn0 M 0 N M 0 N 0 M N
22 8 3ad2ant1 M 0 N 0 M N M
23 resubcl M K M K
24 22 9 23 syl2an M 0 N 0 M N K 0 M K
25 22 adantr M 0 N 0 M N K 0 M
26 nn0re N 0 N
27 26 3ad2ant2 M 0 N 0 M N N
28 27 adantr M 0 N 0 M N K 0 N
29 nn0ge0 K 0 0 K
30 29 adantl M 0 N 0 M N K 0 0 K
31 subge02 M K 0 K M K M
32 22 9 31 syl2an M 0 N 0 M N K 0 0 K M K M
33 30 32 mpbid M 0 N 0 M N K 0 M K M
34 simpl3 M 0 N 0 M N K 0 M N
35 24 25 28 33 34 letrd M 0 N 0 M N K 0 M K N
36 35 ex M 0 N 0 M N K 0 M K N
37 21 36 sylbi M 0 N K 0 M K N
38 1 37 syl5com K 0 N M 0 N M K N
39 38 a1dd K 0 N M 0 N K M M K N
40 39 3imp K 0 N M 0 N K M M K N
41 elfz2nn0 M K 0 N M K 0 N 0 M K N
42 18 20 40 41 syl3anbrc K 0 N M 0 N K M M K 0 N