Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|
2 |
|
elfznn0 |
|
3 |
|
nn0z |
|
4 |
|
nn0z |
|
5 |
|
zsubcl |
|
6 |
3 4 5
|
syl2anr |
|
7 |
6
|
adantr |
|
8 |
|
nn0re |
|
9 |
|
nn0re |
|
10 |
|
subge0 |
|
11 |
8 9 10
|
syl2anr |
|
12 |
11
|
biimpar |
|
13 |
7 12
|
jca |
|
14 |
13
|
exp31 |
|
15 |
1 2 14
|
syl2im |
|
16 |
15
|
3imp |
|
17 |
|
elnn0z |
|
18 |
16 17
|
sylibr |
|
19 |
|
elfz3nn0 |
|
20 |
19
|
3ad2ant1 |
|
21 |
|
elfz2nn0 |
|
22 |
8
|
3ad2ant1 |
|
23 |
|
resubcl |
|
24 |
22 9 23
|
syl2an |
|
25 |
22
|
adantr |
|
26 |
|
nn0re |
|
27 |
26
|
3ad2ant2 |
|
28 |
27
|
adantr |
|
29 |
|
nn0ge0 |
|
30 |
29
|
adantl |
|
31 |
|
subge02 |
|
32 |
22 9 31
|
syl2an |
|
33 |
30 32
|
mpbid |
|
34 |
|
simpl3 |
|
35 |
24 25 28 33 34
|
letrd |
|
36 |
35
|
ex |
|
37 |
21 36
|
sylbi |
|
38 |
1 37
|
syl5com |
|
39 |
38
|
a1dd |
|
40 |
39
|
3imp |
|
41 |
|
elfz2nn0 |
|
42 |
18 20 40 41
|
syl3anbrc |
|