Metamath Proof Explorer


Theorem difeq

Description: Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Assertion difeq A B = C C B = C B = A B

Proof

Step Hyp Ref Expression
1 ineq1 A B = C A B B = C B
2 disjdifr A B B =
3 1 2 eqtr3di A B = C C B =
4 uneq1 A B = C A B B = C B
5 undif1 A B B = A B
6 4 5 eqtr3di A B = C C B = A B
7 3 6 jca A B = C C B = C B = A B
8 simpl C B = C B = A B C B =
9 disj3 C B = C = C B
10 eqcom C = C B C B = C
11 9 10 bitri C B = C B = C
12 8 11 sylib C B = C B = A B C B = C
13 difeq1 C B = A B C B B = A B B
14 difun2 C B B = C B
15 difun2 A B B = A B
16 13 14 15 3eqtr3g C B = A B C B = A B
17 16 eqeq1d C B = A B C B = C A B = C
18 17 adantl C B = C B = A B C B = C A B = C
19 12 18 mpbid C B = C B = A B A B = C
20 7 19 impbii A B = C C B = C B = A B