Metamath Proof Explorer


Theorem difeq12i

Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004)

Ref Expression
Hypotheses difeq1i.1 A = B
difeq12i.2 C = D
Assertion difeq12i A C = B D

Proof

Step Hyp Ref Expression
1 difeq1i.1 A = B
2 difeq12i.2 C = D
3 1 difeq1i A C = B C
4 2 difeq2i B C = B D
5 3 4 eqtri A C = B D