Metamath Proof Explorer


Theorem difex2

Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion difex2 B C A V A B V

Proof

Step Hyp Ref Expression
1 difexg A V A B V
2 ssun2 A B A
3 uncom A B B = B A B
4 undif2 B A B = B A
5 3 4 eqtr2i B A = A B B
6 2 5 sseqtri A A B B
7 unexg A B V B C A B B V
8 ssexg A A B B A B B V A V
9 6 7 8 sylancr A B V B C A V
10 9 expcom B C A B V A V
11 1 10 impbid2 B C A V A B V