Metamath Proof Explorer


Theorem difgtsumgt

Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021)

Ref Expression
Assertion difgtsumgt A B 0 C C < A B C < A + B

Proof

Step Hyp Ref Expression
1 recn A A
2 nn0cn B 0 B
3 1 2 anim12i A B 0 A B
4 3 3adant3 A B 0 C A B
5 negsub A B A + B = A B
6 4 5 syl A B 0 C A + B = A B
7 6 eqcomd A B 0 C A B = A + B
8 7 breq2d A B 0 C C < A B C < A + B
9 simp3 A B 0 C C
10 simp1 A B 0 C A
11 nn0re B 0 B
12 11 renegcld B 0 B
13 12 3ad2ant2 A B 0 C B
14 10 13 readdcld A B 0 C A + B
15 11 3ad2ant2 A B 0 C B
16 10 15 readdcld A B 0 C A + B
17 9 14 16 3jca A B 0 C C A + B A + B
18 nn0negleid B 0 B B
19 18 3ad2ant2 A B 0 C B B
20 13 15 10 19 leadd2dd A B 0 C A + B A + B
21 17 20 lelttrdi A B 0 C C < A + B C < A + B
22 8 21 sylbid A B 0 C C < A B C < A + B