Metamath Proof Explorer


Theorem difin

Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difin A A B = A B

Proof

Step Hyp Ref Expression
1 pm4.61 ¬ x A x B x A ¬ x B
2 anclb x A x B x A x A x B
3 elin x A B x A x B
4 3 imbi2i x A x A B x A x A x B
5 iman x A x A B ¬ x A ¬ x A B
6 2 4 5 3bitr2i x A x B ¬ x A ¬ x A B
7 6 con2bii x A ¬ x A B ¬ x A x B
8 eldif x A B x A ¬ x B
9 1 7 8 3bitr4i x A ¬ x A B x A B
10 9 difeqri A A B = A B