Metamath Proof Explorer


Theorem difin0ss

Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion difin0ss A B C = C A C B

Proof

Step Hyp Ref Expression
1 eq0 A B C = x ¬ x A B C
2 iman x C x A x B ¬ x C ¬ x A x B
3 elin x A B C x A B x C
4 eldif x A B x A ¬ x B
5 4 anbi2ci x A B x C x C x A ¬ x B
6 annim x A ¬ x B ¬ x A x B
7 6 anbi2i x C x A ¬ x B x C ¬ x A x B
8 3 5 7 3bitri x A B C x C ¬ x A x B
9 2 8 xchbinxr x C x A x B ¬ x A B C
10 ax-2 x C x A x B x C x A x C x B
11 9 10 sylbir ¬ x A B C x C x A x C x B
12 11 al2imi x ¬ x A B C x x C x A x x C x B
13 dfss2 C A x x C x A
14 dfss2 C B x x C x B
15 12 13 14 3imtr4g x ¬ x A B C C A C B
16 1 15 sylbi A B C = C A C B