Metamath Proof Explorer


Theorem difin2

Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion difin2 A C A B = C B A

Proof

Step Hyp Ref Expression
1 ssel A C x A x C
2 1 pm4.71d A C x A x A x C
3 2 anbi1d A C x A ¬ x B x A x C ¬ x B
4 eldif x A B x A ¬ x B
5 elin x C B A x C B x A
6 eldif x C B x C ¬ x B
7 6 anbi1i x C B x A x C ¬ x B x A
8 ancom x C ¬ x B x A x A x C ¬ x B
9 anass x A x C ¬ x B x A x C ¬ x B
10 8 9 bitr4i x C ¬ x B x A x A x C ¬ x B
11 5 7 10 3bitri x C B A x A x C ¬ x B
12 3 4 11 3bitr4g A C x A B x C B A
13 12 eqrdv A C A B = C B A