Metamath Proof Explorer


Theorem difindi

Description: Distributive law for class difference. Theorem 40 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion difindi A B C = A B A C

Proof

Step Hyp Ref Expression
1 dfin3 B C = V V B V C
2 1 difeq2i A B C = A V V B V C
3 indi A V B V C = A V B A V C
4 dfin2 A V B V C = A V V B V C
5 invdif A V B = A B
6 invdif A V C = A C
7 5 6 uneq12i A V B A V C = A B A C
8 3 4 7 3eqtr3i A V V B V C = A B A C
9 2 8 eqtri A B C = A B A C