Metamath Proof Explorer


Theorem difioo

Description: The difference between two open intervals sharing the same lower bound. (Contributed by Thierry Arnoux, 26-Sep-2017)

Ref Expression
Assertion difioo A * B * C * A < B A C A B = B C

Proof

Step Hyp Ref Expression
1 incom A B B C = B C A B
2 joiniooico A * B * C * A < B B C A B B C = A B B C = A C
3 2 anassrs A * B * C * A < B B C A B B C = A B B C = A C
4 3 simpld A * B * C * A < B B C A B B C =
5 1 4 eqtr3id A * B * C * A < B B C B C A B =
6 3 simprd A * B * C * A < B B C A B B C = A C
7 uncom B C A B = A B B C
8 7 a1i A * B * C * A < B B C B C A B = A B B C
9 simpll1 A * B * C * A < B B C A *
10 simpl3 A * B * C * A < B C *
11 10 adantr A * B * C * A < B B C C *
12 9 xrleidd A * B * C * A < B B C A A
13 simpr A * B * C * A < B B C B C
14 ioossioo A * C * A A B C A B A C
15 9 11 12 13 14 syl22anc A * B * C * A < B B C A B A C
16 ssequn2 A B A C A C A B = A C
17 15 16 sylib A * B * C * A < B B C A C A B = A C
18 6 8 17 3eqtr4d A * B * C * A < B B C B C A B = A C A B
19 difeq A C A B = B C B C A B = B C A B = A C A B
20 5 18 19 sylanbrc A * B * C * A < B B C A C A B = B C
21 simpll1 A * B * C * A < B C < B A *
22 simpl2 A * B * C * A < B B *
23 22 adantr A * B * C * A < B C < B B *
24 21 xrleidd A * B * C * A < B C < B A A
25 10 adantr A * B * C * A < B C < B C *
26 simpr A * B * C * A < B C < B C < B
27 25 23 26 xrltled A * B * C * A < B C < B C B
28 ioossioo A * B * A A C B A C A B
29 21 23 24 27 28 syl22anc A * B * C * A < B C < B A C A B
30 ssdif0 A C A B A C A B =
31 29 30 sylib A * B * C * A < B C < B A C A B =
32 ico0 B * C * B C = C B
33 32 biimpar B * C * C B B C =
34 23 25 27 33 syl21anc A * B * C * A < B C < B B C =
35 31 34 eqtr4d A * B * C * A < B C < B A C A B = B C
36 xrlelttric B * C * B C C < B
37 22 10 36 syl2anc A * B * C * A < B B C C < B
38 20 35 37 mpjaodan A * B * C * A < B A C A B = B C