Metamath Proof Explorer


Theorem difmap

Description: Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses difmap.a φ A V
difmap.b φ B W
difmap.v φ C Z
difmap.n φ C
Assertion difmap φ A B C A C B C

Proof

Step Hyp Ref Expression
1 difmap.a φ A V
2 difmap.b φ B W
3 difmap.v φ C Z
4 difmap.n φ C
5 difssd φ A B A
6 mapss A V A B A A B C A C
7 1 5 6 syl2anc φ A B C A C
8 7 adantr φ f A B C A B C A C
9 simpr φ f A B C f A B C
10 8 9 sseldd φ f A B C f A C
11 n0 C x x C
12 4 11 sylib φ x x C
13 12 adantr φ f A B C x x C
14 simpr x C f : C B f : C B
15 simpl x C f : C B x C
16 14 15 ffvelrnd x C f : C B f x B
17 16 adantll φ f A B C x C f : C B f x B
18 elmapi f A B C f : C A B
19 18 adantr f A B C x C f : C A B
20 simpr f A B C x C x C
21 19 20 ffvelrnd f A B C x C f x A B
22 eldifn f x A B ¬ f x B
23 21 22 syl f A B C x C ¬ f x B
24 23 ad4ant23 φ f A B C x C f : C B ¬ f x B
25 17 24 pm2.65da φ f A B C x C ¬ f : C B
26 25 ex φ f A B C x C ¬ f : C B
27 26 exlimdv φ f A B C x x C ¬ f : C B
28 13 27 mpd φ f A B C ¬ f : C B
29 elmapg B W C Z f B C f : C B
30 2 3 29 syl2anc φ f B C f : C B
31 30 adantr φ f A B C f B C f : C B
32 28 31 mtbird φ f A B C ¬ f B C
33 10 32 eldifd φ f A B C f A C B C
34 33 ralrimiva φ f A B C f A C B C
35 dfss3 A B C A C B C f A B C f A C B C
36 34 35 sylibr φ A B C A C B C