Metamath Proof Explorer


Theorem difmapsn

Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses difmapsn.a φ A V
difmapsn.b φ B W
difmapsn.v φ C Z
Assertion difmapsn φ A C B C = A B C

Proof

Step Hyp Ref Expression
1 difmapsn.a φ A V
2 difmapsn.b φ B W
3 difmapsn.v φ C Z
4 eldifi f A C B C f A C
5 4 adantl φ f A C B C f A C
6 elmapi f A C f : C A
7 6 adantl φ f A C f : C A
8 fsn2g C Z f : C A f C A f = C f C
9 3 8 syl φ f : C A f C A f = C f C
10 9 adantr φ f A C f : C A f C A f = C f C
11 7 10 mpbid φ f A C f C A f = C f C
12 11 simpld φ f A C f C A
13 5 12 syldan φ f A C B C f C A
14 simpr φ f A C B C f C B f C B
15 11 simprd φ f A C f = C f C
16 5 15 syldan φ f A C B C f = C f C
17 16 adantr φ f A C B C f C B f = C f C
18 14 17 jca φ f A C B C f C B f C B f = C f C
19 fsn2g C Z f : C B f C B f = C f C
20 3 19 syl φ f : C B f C B f = C f C
21 20 ad2antrr φ f A C B C f C B f : C B f C B f = C f C
22 18 21 mpbird φ f A C B C f C B f : C B
23 2 ad2antrr φ f A C B C f C B B W
24 snex C V
25 24 a1i φ f A C B C f C B C V
26 23 25 elmapd φ f A C B C f C B f B C f : C B
27 22 26 mpbird φ f A C B C f C B f B C
28 eldifn f A C B C ¬ f B C
29 28 ad2antlr φ f A C B C f C B ¬ f B C
30 27 29 pm2.65da φ f A C B C ¬ f C B
31 13 30 eldifd φ f A C B C f C A B
32 31 16 jca φ f A C B C f C A B f = C f C
33 fsn2g C Z f : C A B f C A B f = C f C
34 3 33 syl φ f : C A B f C A B f = C f C
35 34 adantr φ f A C B C f : C A B f C A B f = C f C
36 32 35 mpbird φ f A C B C f : C A B
37 difssd φ A B A
38 1 37 ssexd φ A B V
39 24 a1i φ C V
40 38 39 elmapd φ f A B C f : C A B
41 40 adantr φ f A C B C f A B C f : C A B
42 36 41 mpbird φ f A C B C f A B C
43 42 ralrimiva φ f A C B C f A B C
44 dfss3 A C B C A B C f A C B C f A B C
45 43 44 sylibr φ A C B C A B C
46 3 snn0d φ C
47 1 2 39 46 difmap φ A B C A C B C
48 45 47 eqssd φ A C B C = A B C