Metamath Proof Explorer


Theorem difmbl

Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion difmbl A dom vol B dom vol A B dom vol

Proof

Step Hyp Ref Expression
1 indif2 A B = A B
2 mblss A dom vol A
3 df-ss A A = A
4 2 3 sylib A dom vol A = A
5 4 difeq1d A dom vol A B = A B
6 1 5 syl5eq A dom vol A B = A B
7 6 adantr A dom vol B dom vol A B = A B
8 cmmbl B dom vol B dom vol
9 inmbl A dom vol B dom vol A B dom vol
10 8 9 sylan2 A dom vol B dom vol A B dom vol
11 7 10 eqeltrrd A dom vol B dom vol A B dom vol