Metamath Proof Explorer


Theorem difopabOLD

Description: Obsolete version of difopab as of 19-Dec-2024. (Contributed by Stefan O'Rear, 17-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion difopabOLD xy|φxy|ψ=xy|φ¬ψ

Proof

Step Hyp Ref Expression
1 relopabv Relxy|φ
2 reldif Relxy|φRelxy|φxy|ψ
3 1 2 ax-mp Relxy|φxy|ψ
4 relopabv Relxy|φ¬ψ
5 sbcan [˙z/x]˙[˙w/y]˙φ[˙w/y]˙¬ψ[˙z/x]˙[˙w/y]˙φ[˙z/x]˙[˙w/y]˙¬ψ
6 sbcan [˙w/y]˙φ¬ψ[˙w/y]˙φ[˙w/y]˙¬ψ
7 6 sbcbii [˙z/x]˙[˙w/y]˙φ¬ψ[˙z/x]˙[˙w/y]˙φ[˙w/y]˙¬ψ
8 opelopabsb zwxy|φ[˙z/x]˙[˙w/y]˙φ
9 sbcng zV[˙z/x]˙¬[˙w/y]˙ψ¬[˙z/x]˙[˙w/y]˙ψ
10 9 elv [˙z/x]˙¬[˙w/y]˙ψ¬[˙z/x]˙[˙w/y]˙ψ
11 sbcng wV[˙w/y]˙¬ψ¬[˙w/y]˙ψ
12 11 elv [˙w/y]˙¬ψ¬[˙w/y]˙ψ
13 12 sbcbii [˙z/x]˙[˙w/y]˙¬ψ[˙z/x]˙¬[˙w/y]˙ψ
14 opelopabsb zwxy|ψ[˙z/x]˙[˙w/y]˙ψ
15 14 notbii ¬zwxy|ψ¬[˙z/x]˙[˙w/y]˙ψ
16 10 13 15 3bitr4ri ¬zwxy|ψ[˙z/x]˙[˙w/y]˙¬ψ
17 8 16 anbi12i zwxy|φ¬zwxy|ψ[˙z/x]˙[˙w/y]˙φ[˙z/x]˙[˙w/y]˙¬ψ
18 5 7 17 3bitr4ri zwxy|φ¬zwxy|ψ[˙z/x]˙[˙w/y]˙φ¬ψ
19 eldif zwxy|φxy|ψzwxy|φ¬zwxy|ψ
20 opelopabsb zwxy|φ¬ψ[˙z/x]˙[˙w/y]˙φ¬ψ
21 18 19 20 3bitr4i zwxy|φxy|ψzwxy|φ¬ψ
22 3 4 21 eqrelriiv xy|φxy|ψ=xy|φ¬ψ