Metamath Proof Explorer


Theorem difopn

Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014)

Ref Expression
Hypothesis iscld.1 X = J
Assertion difopn A J B Clsd J A B J

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 elssuni A J A J
3 2 1 sseqtrrdi A J A X
4 3 adantr A J B Clsd J A X
5 df-ss A X A X = A
6 4 5 sylib A J B Clsd J A X = A
7 6 difeq1d A J B Clsd J A X B = A B
8 indif2 A X B = A X B
9 cldrcl B Clsd J J Top
10 9 adantl A J B Clsd J J Top
11 simpl A J B Clsd J A J
12 1 cldopn B Clsd J X B J
13 12 adantl A J B Clsd J X B J
14 inopn J Top A J X B J A X B J
15 10 11 13 14 syl3anc A J B Clsd J A X B J
16 8 15 eqeltrrid A J B Clsd J A X B J
17 7 16 eqeltrrd A J B Clsd J A B J