Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
difpreima
Next ⟩
respreima
Metamath Proof Explorer
Ascii
Unicode
Theorem
difpreima
Description:
Preimage of a difference.
(Contributed by
Mario Carneiro
, 14-Jun-2016)
Ref
Expression
Assertion
difpreima
⊢
Fun
⁡
F
→
F
-1
A
∖
B
=
F
-1
A
∖
F
-1
B
Proof
Step
Hyp
Ref
Expression
1
funcnvcnv
⊢
Fun
⁡
F
→
Fun
⁡
F
-1
-1
2
imadif
⊢
Fun
⁡
F
-1
-1
→
F
-1
A
∖
B
=
F
-1
A
∖
F
-1
B
3
1
2
syl
⊢
Fun
⁡
F
→
F
-1
A
∖
B
=
F
-1
A
∖
F
-1
B