Metamath Proof Explorer


Theorem difprsn2

Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)

Ref Expression
Assertion difprsn2 A B A B B = A

Proof

Step Hyp Ref Expression
1 prcom A B = B A
2 1 difeq1i A B B = B A B
3 necom A B B A
4 difprsn1 B A B A B = A
5 3 4 sylbi A B B A B = A
6 2 5 eqtrid A B A B B = A