Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
difrab
Next ⟩
dfrab3
Metamath Proof Explorer
Ascii
Unicode
Theorem
difrab
Description:
Difference of two restricted class abstractions.
(Contributed by
NM
, 23-Oct-2004)
Ref
Expression
Assertion
difrab
⊢
x
∈
A
|
φ
∖
x
∈
A
|
ψ
=
x
∈
A
|
φ
∧
¬
ψ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
2
df-rab
⊢
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
ψ
3
1
2
difeq12i
⊢
x
∈
A
|
φ
∖
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
φ
∖
x
|
x
∈
A
∧
ψ
4
df-rab
⊢
x
∈
A
|
φ
∧
¬
ψ
=
x
|
x
∈
A
∧
φ
∧
¬
ψ
5
difab
⊢
x
|
x
∈
A
∧
φ
∖
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
6
anass
⊢
x
∈
A
∧
φ
∧
¬
ψ
↔
x
∈
A
∧
φ
∧
¬
ψ
7
simpr
⊢
x
∈
A
∧
ψ
→
ψ
8
7
con3i
⊢
¬
ψ
→
¬
x
∈
A
∧
ψ
9
8
anim2i
⊢
x
∈
A
∧
φ
∧
¬
ψ
→
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
10
pm3.2
⊢
x
∈
A
→
ψ
→
x
∈
A
∧
ψ
11
10
adantr
⊢
x
∈
A
∧
φ
→
ψ
→
x
∈
A
∧
ψ
12
11
con3d
⊢
x
∈
A
∧
φ
→
¬
x
∈
A
∧
ψ
→
¬
ψ
13
12
imdistani
⊢
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
→
x
∈
A
∧
φ
∧
¬
ψ
14
9
13
impbii
⊢
x
∈
A
∧
φ
∧
¬
ψ
↔
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
15
6
14
bitr3i
⊢
x
∈
A
∧
φ
∧
¬
ψ
↔
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
16
15
abbii
⊢
x
|
x
∈
A
∧
φ
∧
¬
ψ
=
x
|
x
∈
A
∧
φ
∧
¬
x
∈
A
∧
ψ
17
5
16
eqtr4i
⊢
x
|
x
∈
A
∧
φ
∖
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
¬
ψ
18
4
17
eqtr4i
⊢
x
∈
A
|
φ
∧
¬
ψ
=
x
|
x
∈
A
∧
φ
∖
x
|
x
∈
A
∧
ψ
19
3
18
eqtr4i
⊢
x
∈
A
|
φ
∖
x
∈
A
|
ψ
=
x
∈
A
|
φ
∧
¬
ψ