Metamath Proof Explorer


Theorem difrab

Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion difrab xA|φxA|ψ=xA|φ¬ψ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 df-rab xA|ψ=x|xAψ
3 1 2 difeq12i xA|φxA|ψ=x|xAφx|xAψ
4 df-rab xA|φ¬ψ=x|xAφ¬ψ
5 difab x|xAφx|xAψ=x|xAφ¬xAψ
6 anass xAφ¬ψxAφ¬ψ
7 simpr xAψψ
8 7 con3i ¬ψ¬xAψ
9 8 anim2i xAφ¬ψxAφ¬xAψ
10 pm3.2 xAψxAψ
11 10 adantr xAφψxAψ
12 11 con3d xAφ¬xAψ¬ψ
13 12 imdistani xAφ¬xAψxAφ¬ψ
14 9 13 impbii xAφ¬ψxAφ¬xAψ
15 6 14 bitr3i xAφ¬ψxAφ¬xAψ
16 15 abbii x|xAφ¬ψ=x|xAφ¬xAψ
17 5 16 eqtr4i x|xAφx|xAψ=x|xAφ¬ψ
18 4 17 eqtr4i xA|φ¬ψ=x|xAφx|xAψ
19 3 18 eqtr4i xA|φxA|ψ=xA|φ¬ψ