Metamath Proof Explorer


Theorem difreicc

Description: The class difference of RR and a closed interval. (Contributed by FL, 18-Jun-2007)

Ref Expression
Assertion difreicc A B A B = −∞ A B +∞

Proof

Step Hyp Ref Expression
1 eldif x A B x ¬ x A B
2 rexr A A *
3 rexr B B *
4 elicc1 A * B * x A B x * A x x B
5 2 3 4 syl2an A B x A B x * A x x B
6 5 adantr A B x x A B x * A x x B
7 6 notbid A B x ¬ x A B ¬ x * A x x B
8 3anass x * A x x B x * A x x B
9 8 notbii ¬ x * A x x B ¬ x * A x x B
10 ianor ¬ x * A x x B ¬ x * ¬ A x x B
11 rexr x x *
12 11 pm2.24d x ¬ x * x −∞ A x B +∞
13 12 adantl A B x ¬ x * x −∞ A x B +∞
14 ianor ¬ A x x B ¬ A x ¬ x B
15 11 ad2antlr A B x ¬ A x x *
16 mnflt x −∞ < x
17 16 ad2antlr A B x ¬ A x −∞ < x
18 simpr A B x x
19 simpll A B x A
20 ltnle x A x < A ¬ A x
21 20 bicomd x A ¬ A x x < A
22 18 19 21 syl2anc A B x ¬ A x x < A
23 22 biimpa A B x ¬ A x x < A
24 mnfxr −∞ *
25 2 ad3antrrr A B x ¬ A x A *
26 elioo1 −∞ * A * x −∞ A x * −∞ < x x < A
27 24 25 26 sylancr A B x ¬ A x x −∞ A x * −∞ < x x < A
28 15 17 23 27 mpbir3and A B x ¬ A x x −∞ A
29 28 ex A B x ¬ A x x −∞ A
30 ltnle B x B < x ¬ x B
31 30 adantll A B x B < x ¬ x B
32 11 ad2antlr A B x B < x x *
33 simpr A B x B < x B < x
34 ltpnf x x < +∞
35 34 ad2antlr A B x B < x x < +∞
36 3 ad3antlr A B x B < x B *
37 pnfxr +∞ *
38 elioo1 B * +∞ * x B +∞ x * B < x x < +∞
39 36 37 38 sylancl A B x B < x x B +∞ x * B < x x < +∞
40 32 33 35 39 mpbir3and A B x B < x x B +∞
41 40 ex A B x B < x x B +∞
42 31 41 sylbird A B x ¬ x B x B +∞
43 29 42 orim12d A B x ¬ A x ¬ x B x −∞ A x B +∞
44 14 43 syl5bi A B x ¬ A x x B x −∞ A x B +∞
45 13 44 jaod A B x ¬ x * ¬ A x x B x −∞ A x B +∞
46 10 45 syl5bi A B x ¬ x * A x x B x −∞ A x B +∞
47 9 46 syl5bi A B x ¬ x * A x x B x −∞ A x B +∞
48 7 47 sylbid A B x ¬ x A B x −∞ A x B +∞
49 48 expimpd A B x ¬ x A B x −∞ A x B +∞
50 elun x −∞ A B +∞ x −∞ A x B +∞
51 49 50 syl6ibr A B x ¬ x A B x −∞ A B +∞
52 ioossre −∞ A
53 ioossre B +∞
54 52 53 unssi −∞ A B +∞
55 54 sseli x −∞ A B +∞ x
56 55 adantl A B x −∞ A B +∞ x
57 elioo2 −∞ * A * x −∞ A x −∞ < x x < A
58 24 2 57 sylancr A x −∞ A x −∞ < x x < A
59 58 adantr A B x −∞ A x −∞ < x x < A
60 20 biimpd x A x < A ¬ A x
61 60 ex x A x < A ¬ A x
62 61 a1i −∞ < x x A x < A ¬ A x
63 62 com13 A x −∞ < x x < A ¬ A x
64 63 adantr A B x −∞ < x x < A ¬ A x
65 64 3impd A B x −∞ < x x < A ¬ A x
66 59 65 sylbid A B x −∞ A ¬ A x
67 3 adantl A B B *
68 67 37 38 sylancl A B x B +∞ x * B < x x < +∞
69 xrltnle B * x * B < x ¬ x B
70 69 biimpd B * x * B < x ¬ x B
71 70 ex B * x * B < x ¬ x B
72 71 a1ddd B * x * B < x x < +∞ ¬ x B
73 3 72 syl B x * B < x x < +∞ ¬ x B
74 73 adantl A B x * B < x x < +∞ ¬ x B
75 74 3impd A B x * B < x x < +∞ ¬ x B
76 68 75 sylbid A B x B +∞ ¬ x B
77 66 76 orim12d A B x −∞ A x B +∞ ¬ A x ¬ x B
78 50 77 syl5bi A B x −∞ A B +∞ ¬ A x ¬ x B
79 78 imp A B x −∞ A B +∞ ¬ A x ¬ x B
80 79 14 sylibr A B x −∞ A B +∞ ¬ A x x B
81 80 intnand A B x −∞ A B +∞ ¬ x * A x x B
82 81 8 sylnibr A B x −∞ A B +∞ ¬ x * A x x B
83 2 3 anim12i A B A * B *
84 83 adantr A B x −∞ A B +∞ A * B *
85 4 notbid A * B * ¬ x A B ¬ x * A x x B
86 84 85 syl A B x −∞ A B +∞ ¬ x A B ¬ x * A x x B
87 82 86 mpbird A B x −∞ A B +∞ ¬ x A B
88 56 87 jca A B x −∞ A B +∞ x ¬ x A B
89 88 ex A B x −∞ A B +∞ x ¬ x A B
90 51 89 impbid A B x ¬ x A B x −∞ A B +∞
91 1 90 syl5bb A B x A B x −∞ A B +∞
92 91 eqrdv A B A B = −∞ A B +∞