Metamath Proof Explorer


Theorem difsnb

Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion difsnb ¬ A B B A = B

Proof

Step Hyp Ref Expression
1 difsn ¬ A B B A = B
2 neldifsnd A B ¬ A B A
3 nelne1 A B ¬ A B A B B A
4 2 3 mpdan A B B B A
5 4 necomd A B B A B
6 5 necon2bi B A = B ¬ A B
7 1 6 impbii ¬ A B B A = B