Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnb | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difsn | ||
| 2 | neldifsnd | ||
| 3 | nelne1 | ||
| 4 | 2 3 | mpdan | |
| 5 | 4 | necomd | |
| 6 | 5 | necon2bi | |
| 7 | 1 6 | impbii |