Metamath Proof Explorer


Theorem difsnen

Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion difsnen X V A X B X X A X B

Proof

Step Hyp Ref Expression
1 difexg X V X A V
2 enrefg X A V X A X A
3 1 2 syl X V X A X A
4 3 3ad2ant1 X V A X B X X A X A
5 sneq A = B A = B
6 5 difeq2d A = B X A = X B
7 6 breq2d A = B X A X A X A X B
8 4 7 syl5ibcom X V A X B X A = B X A X B
9 8 imp X V A X B X A = B X A X B
10 simpl1 X V A X B X A B X V
11 difexg X A V X A B V
12 enrefg X A B V X A B X A B
13 10 1 11 12 4syl X V A X B X A B X A B X A B
14 dif32 X A B = X B A
15 13 14 breqtrdi X V A X B X A B X A B X B A
16 simpl3 X V A X B X A B B X
17 simpl2 X V A X B X A B A X
18 en2sn B X A X B A
19 16 17 18 syl2anc X V A X B X A B B A
20 disjdifr X A B B =
21 20 a1i X V A X B X A B X A B B =
22 disjdifr X B A A =
23 22 a1i X V A X B X A B X B A A =
24 unen X A B X B A B A X A B B = X B A A = X A B B X B A A
25 15 19 21 23 24 syl22anc X V A X B X A B X A B B X B A A
26 simpr X V A X B X A B A B
27 26 necomd X V A X B X A B B A
28 eldifsn B X A B X B A
29 16 27 28 sylanbrc X V A X B X A B B X A
30 difsnid B X A X A B B = X A
31 29 30 syl X V A X B X A B X A B B = X A
32 eldifsn A X B A X A B
33 17 26 32 sylanbrc X V A X B X A B A X B
34 difsnid A X B X B A A = X B
35 33 34 syl X V A X B X A B X B A A = X B
36 25 31 35 3brtr3d X V A X B X A B X A X B
37 9 36 pm2.61dane X V A X B X X A X B