| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difexg |  | 
						
							| 2 |  | enrefg |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 | 3 | 3ad2ant1 |  | 
						
							| 5 |  | sneq |  | 
						
							| 6 | 5 | difeq2d |  | 
						
							| 7 | 6 | breq2d |  | 
						
							| 8 | 4 7 | syl5ibcom |  | 
						
							| 9 | 8 | imp |  | 
						
							| 10 |  | simpl1 |  | 
						
							| 11 |  | difexg |  | 
						
							| 12 |  | enrefg |  | 
						
							| 13 | 10 1 11 12 | 4syl |  | 
						
							| 14 |  | dif32 |  | 
						
							| 15 | 13 14 | breqtrdi |  | 
						
							| 16 |  | simpl3 |  | 
						
							| 17 |  | simpl2 |  | 
						
							| 18 |  | en2sn |  | 
						
							| 19 | 16 17 18 | syl2anc |  | 
						
							| 20 |  | disjdifr |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | disjdifr |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | unen |  | 
						
							| 25 | 15 19 21 23 24 | syl22anc |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 26 | necomd |  | 
						
							| 28 |  | eldifsn |  | 
						
							| 29 | 16 27 28 | sylanbrc |  | 
						
							| 30 |  | difsnid |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | eldifsn |  | 
						
							| 33 | 17 26 32 | sylanbrc |  | 
						
							| 34 |  | difsnid |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 25 31 35 | 3brtr3d |  | 
						
							| 37 | 9 36 | pm2.61dane |  |