Metamath Proof Explorer


Theorem difsnexi

Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Assertion difsnexi N K V N V

Proof

Step Hyp Ref Expression
1 simpr K N N K V N K V
2 snex K V
3 unexg N K V K V N K K V
4 1 2 3 sylancl K N N K V N K K V
5 difsnid K N N K K = N
6 5 eqcomd K N N = N K K
7 6 eleq1d K N N V N K K V
8 7 adantr K N N K V N V N K K V
9 4 8 mpbird K N N K V N V
10 9 ex K N N K V N V
11 difsn ¬ K N N K = N
12 11 eleq1d ¬ K N N K V N V
13 12 biimpd ¬ K N N K V N V
14 10 13 pm2.61i N K V N V