Metamath Proof Explorer


Theorem difsymssdifssd

Description: If the symmetric difference is contained in C , so is one of the differences. (Contributed by AV, 17-Aug-2022)

Ref Expression
Hypothesis difsymssdifssd.1 φ A B C
Assertion difsymssdifssd φ A B C

Proof

Step Hyp Ref Expression
1 difsymssdifssd.1 φ A B C
2 difsssymdif A B A B
3 2 1 sstrid φ A B C