Metamath Proof Explorer


Theorem diftpsn3

Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion diftpsn3 A C B C A B C C = A B

Proof

Step Hyp Ref Expression
1 disjprsn A C B C A B C =
2 disj3 A B C = A B = A B C
3 1 2 sylib A C B C A B = A B C
4 3 eqcomd A C B C A B C = A B
5 difid C C =
6 5 a1i A C B C C C =
7 4 6 uneq12d A C B C A B C C C = A B
8 df-tp A B C = A B C
9 8 difeq1i A B C C = A B C C
10 difundir A B C C = A B C C C
11 9 10 eqtr2i A B C C C = A B C C
12 un0 A B = A B
13 7 11 12 3eqtr3g A C B C A B C C = A B