Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Combinations of difference, union, and intersection of two classes
difun1
Next ⟩
undif3
Metamath Proof Explorer
Ascii
Unicode
Theorem
difun1
Description:
A relationship involving double difference and union.
(Contributed by
NM
, 29-Aug-2004)
Ref
Expression
Assertion
difun1
⊢
A
∖
B
∪
C
=
A
∖
B
∖
C
Proof
Step
Hyp
Ref
Expression
1
inass
⊢
A
∩
V
∖
B
∩
V
∖
C
=
A
∩
V
∖
B
∩
V
∖
C
2
invdif
⊢
A
∩
V
∖
B
∩
V
∖
C
=
A
∩
V
∖
B
∖
C
3
1
2
eqtr3i
⊢
A
∩
V
∖
B
∩
V
∖
C
=
A
∩
V
∖
B
∖
C
4
undm
⊢
V
∖
B
∪
C
=
V
∖
B
∩
V
∖
C
5
4
ineq2i
⊢
A
∩
V
∖
B
∪
C
=
A
∩
V
∖
B
∩
V
∖
C
6
invdif
⊢
A
∩
V
∖
B
∪
C
=
A
∖
B
∪
C
7
5
6
eqtr3i
⊢
A
∩
V
∖
B
∩
V
∖
C
=
A
∖
B
∪
C
8
3
7
eqtr3i
⊢
A
∩
V
∖
B
∖
C
=
A
∖
B
∪
C
9
invdif
⊢
A
∩
V
∖
B
=
A
∖
B
10
9
difeq1i
⊢
A
∩
V
∖
B
∖
C
=
A
∖
B
∖
C
11
8
10
eqtr3i
⊢
A
∖
B
∪
C
=
A
∖
B
∖
C