Metamath Proof Explorer


Theorem difxp1ss

Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Assertion difxp1ss AC×BA×B

Proof

Step Hyp Ref Expression
1 difxp1 AC×B=A×BC×B
2 difss A×BC×BA×B
3 1 2 eqsstri AC×BA×B