Step |
Hyp |
Ref |
Expression |
1 |
|
digit2 |
|
2 |
1
|
3coml |
|
3 |
2
|
3expa |
|
4 |
3
|
oveq1d |
|
5 |
|
nnre |
|
6 |
|
nnnn0 |
|
7 |
|
reexpcl |
|
8 |
5 6 7
|
syl2an |
|
9 |
|
remulcl |
|
10 |
8 9
|
sylan |
|
11 |
|
reflcl |
|
12 |
10 11
|
syl |
|
13 |
|
nnrp |
|
14 |
13
|
ad2antrr |
|
15 |
12 14
|
modcld |
|
16 |
|
nnexpcl |
|
17 |
6 16
|
sylan2 |
|
18 |
17
|
nnrpd |
|
19 |
18
|
adantr |
|
20 |
|
modge0 |
|
21 |
12 14 20
|
syl2anc |
|
22 |
5
|
ad2antrr |
|
23 |
8
|
adantr |
|
24 |
|
modlt |
|
25 |
12 14 24
|
syl2anc |
|
26 |
|
nncn |
|
27 |
|
exp1 |
|
28 |
26 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
5
|
adantr |
|
31 |
|
nnge1 |
|
32 |
31
|
adantr |
|
33 |
|
simpr |
|
34 |
|
nnuz |
|
35 |
33 34
|
eleqtrdi |
|
36 |
|
leexp2a |
|
37 |
30 32 35 36
|
syl3anc |
|
38 |
29 37
|
eqbrtrrd |
|
39 |
38
|
adantr |
|
40 |
15 22 23 25 39
|
ltletrd |
|
41 |
|
modid |
|
42 |
15 19 21 40 41
|
syl22anc |
|
43 |
|
simpll |
|
44 |
|
nnm1nn0 |
|
45 |
|
reexpcl |
|
46 |
5 44 45
|
syl2an |
|
47 |
|
remulcl |
|
48 |
46 47
|
sylan |
|
49 |
|
nnexpcl |
|
50 |
44 49
|
sylan2 |
|
51 |
50
|
adantr |
|
52 |
|
modmulnn |
|
53 |
43 48 51 52
|
syl3anc |
|
54 |
|
expm1t |
|
55 |
|
expcl |
|
56 |
44 55
|
sylan2 |
|
57 |
|
simpl |
|
58 |
56 57
|
mulcomd |
|
59 |
54 58
|
eqtrd |
|
60 |
26 59
|
sylan |
|
61 |
60
|
adantr |
|
62 |
61
|
oveq2d |
|
63 |
61
|
oveq1d |
|
64 |
26
|
ad2antrr |
|
65 |
26 44 55
|
syl2an |
|
66 |
65
|
adantr |
|
67 |
|
recn |
|
68 |
67
|
adantl |
|
69 |
64 66 68
|
mulassd |
|
70 |
63 69
|
eqtrd |
|
71 |
70
|
fveq2d |
|
72 |
71 61
|
oveq12d |
|
73 |
53 62 72
|
3brtr4d |
|
74 |
|
reflcl |
|
75 |
48 74
|
syl |
|
76 |
|
remulcl |
|
77 |
22 75 76
|
syl2anc |
|
78 |
|
modsubdir |
|
79 |
12 77 19 78
|
syl3anc |
|
80 |
73 79
|
mpbid |
|
81 |
4 42 80
|
3eqtr3d |
|
82 |
81
|
3impa |
|
83 |
82
|
3comr |
|