Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|
2 |
|
nnnn0 |
|
3 |
|
reexpcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
remulcl |
|
6 |
4 5
|
stoic3 |
|
7 |
6
|
3comr |
|
8 |
|
reflcl |
|
9 |
7 8
|
syl |
|
10 |
|
nnrp |
|
11 |
10
|
3ad2ant2 |
|
12 |
|
modval |
|
13 |
9 11 12
|
syl2anc |
|
14 |
|
simp2 |
|
15 |
|
fldiv |
|
16 |
7 14 15
|
syl2anc |
|
17 |
|
nncn |
|
18 |
|
expcl |
|
19 |
17 2 18
|
syl2an |
|
20 |
19
|
3adant1 |
|
21 |
|
recn |
|
22 |
21
|
3ad2ant1 |
|
23 |
|
nnne0 |
|
24 |
17 23
|
jca |
|
25 |
24
|
3ad2ant2 |
|
26 |
|
div23 |
|
27 |
20 22 25 26
|
syl3anc |
|
28 |
|
nnz |
|
29 |
|
expm1 |
|
30 |
17 23 28 29
|
syl2an3an |
|
31 |
30
|
3adant1 |
|
32 |
31
|
oveq1d |
|
33 |
27 32
|
eqtr4d |
|
34 |
33
|
fveq2d |
|
35 |
16 34
|
eqtrd |
|
36 |
35
|
oveq2d |
|
37 |
36
|
oveq2d |
|
38 |
13 37
|
eqtrd |
|