| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  | 
						
							| 2 |  | nnnn0 |  | 
						
							| 3 |  | reexpcl |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | remulcl |  | 
						
							| 6 | 4 5 | stoic3 |  | 
						
							| 7 | 6 | 3comr |  | 
						
							| 8 |  | reflcl |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | nnrp |  | 
						
							| 11 | 10 | 3ad2ant2 |  | 
						
							| 12 |  | modval |  | 
						
							| 13 | 9 11 12 | syl2anc |  | 
						
							| 14 |  | simp2 |  | 
						
							| 15 |  | fldiv |  | 
						
							| 16 | 7 14 15 | syl2anc |  | 
						
							| 17 |  | nncn |  | 
						
							| 18 |  | expcl |  | 
						
							| 19 | 17 2 18 | syl2an |  | 
						
							| 20 | 19 | 3adant1 |  | 
						
							| 21 |  | recn |  | 
						
							| 22 | 21 | 3ad2ant1 |  | 
						
							| 23 |  | nnne0 |  | 
						
							| 24 | 17 23 | jca |  | 
						
							| 25 | 24 | 3ad2ant2 |  | 
						
							| 26 |  | div23 |  | 
						
							| 27 | 20 22 25 26 | syl3anc |  | 
						
							| 28 |  | nnz |  | 
						
							| 29 |  | expm1 |  | 
						
							| 30 | 17 23 28 29 | syl2an3an |  | 
						
							| 31 | 30 | 3adant1 |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 27 32 | eqtr4d |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 | 16 34 | eqtrd |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 13 37 | eqtrd |  |