Metamath Proof Explorer


Theorem dihglblem6

Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses dihglblem6.b B = Base K
dihglblem6.l ˙ = K
dihglblem6.m ˙ = meet K
dihglblem6.a A = Atoms K
dihglblem6.g G = glb K
dihglblem6.h H = LHyp K
dihglblem6.i I = DIsoH K W
dihglblem6.u U = DVecH K W
dihglblem6.s P = LSubSp U
dihglblem6.d D = LSAtoms U
Assertion dihglblem6 K HL W H S B S I G S = x S I x

Proof

Step Hyp Ref Expression
1 dihglblem6.b B = Base K
2 dihglblem6.l ˙ = K
3 dihglblem6.m ˙ = meet K
4 dihglblem6.a A = Atoms K
5 dihglblem6.g G = glb K
6 dihglblem6.h H = LHyp K
7 dihglblem6.i I = DIsoH K W
8 dihglblem6.u U = DVecH K W
9 dihglblem6.s P = LSubSp U
10 dihglblem6.d D = LSAtoms U
11 eqid meet K = meet K
12 eqid u B | v S u = v meet K W = u B | v S u = v meet K W
13 eqid DIsoB K W = DIsoB K W
14 1 2 11 5 6 12 13 7 dihglblem4 K HL W H S B S I G S x S I x
15 fal ¬
16 simpll K HL W H S B S I G S x S I x K HL W H
17 6 8 16 dvhlmod K HL W H S B S I G S x S I x U LMod
18 simplll K HL W H S B S I G S x S I x K HL
19 hlclat K HL K CLat
20 18 19 syl K HL W H S B S I G S x S I x K CLat
21 simplrl K HL W H S B S I G S x S I x S B
22 1 5 clatglbcl K CLat S B G S B
23 20 21 22 syl2anc K HL W H S B S I G S x S I x G S B
24 1 6 7 8 9 dihlss K HL W H G S B I G S P
25 16 23 24 syl2anc K HL W H S B S I G S x S I x I G S P
26 1 5 6 8 7 9 dihglblem5 K HL W H S B S x S I x P
27 26 adantr K HL W H S B S I G S x S I x x S I x P
28 simpr K HL W H S B S I G S x S I x I G S x S I x
29 9 10 17 25 27 28 lpssat K HL W H S B S I G S x S I x p D p x S I x ¬ p I G S
30 29 ex K HL W H S B S I G S x S I x p D p x S I x ¬ p I G S
31 simp1l K HL W H S B S p D p x S I x ¬ p I G S K HL W H
32 6 8 7 10 dih1dimat K HL W H p D p ran I
33 32 adantlr K HL W H S B S p D p ran I
34 33 3adant3 K HL W H S B S p D p x S I x ¬ p I G S p ran I
35 6 7 dihcnvid2 K HL W H p ran I I I -1 p = p
36 31 34 35 syl2anc K HL W H S B S p D p x S I x ¬ p I G S I I -1 p = p
37 simp3l K HL W H S B S p D p x S I x ¬ p I G S p x S I x
38 ssiin p x S I x x S p I x
39 37 38 sylib K HL W H S B S p D p x S I x ¬ p I G S x S p I x
40 simplll K HL W H S B S p D x S K HL W H
41 simpll K HL W H S B S p D K HL W H
42 1 6 7 8 9 dihf11 K HL W H I : B 1-1 P
43 f1f1orn I : B 1-1 P I : B 1-1 onto ran I
44 41 42 43 3syl K HL W H S B S p D I : B 1-1 onto ran I
45 f1ocnvdm I : B 1-1 onto ran I p ran I I -1 p B
46 44 33 45 syl2anc K HL W H S B S p D I -1 p B
47 46 adantr K HL W H S B S p D x S I -1 p B
48 simplrl K HL W H S B S p D S B
49 48 sselda K HL W H S B S p D x S x B
50 1 2 6 7 dihord K HL W H I -1 p B x B I I -1 p I x I -1 p ˙ x
51 40 47 49 50 syl3anc K HL W H S B S p D x S I I -1 p I x I -1 p ˙ x
52 41 33 35 syl2anc K HL W H S B S p D I I -1 p = p
53 52 adantr K HL W H S B S p D x S I I -1 p = p
54 53 sseq1d K HL W H S B S p D x S I I -1 p I x p I x
55 51 54 bitr3d K HL W H S B S p D x S I -1 p ˙ x p I x
56 55 ralbidva K HL W H S B S p D x S I -1 p ˙ x x S p I x
57 56 3adant3 K HL W H S B S p D p x S I x ¬ p I G S x S I -1 p ˙ x x S p I x
58 39 57 mpbird K HL W H S B S p D p x S I x ¬ p I G S x S I -1 p ˙ x
59 simp1ll K HL W H S B S p D p x S I x ¬ p I G S K HL
60 59 19 syl K HL W H S B S p D p x S I x ¬ p I G S K CLat
61 46 3adant3 K HL W H S B S p D p x S I x ¬ p I G S I -1 p B
62 simp1rl K HL W H S B S p D p x S I x ¬ p I G S S B
63 1 2 5 clatleglb K CLat I -1 p B S B I -1 p ˙ G S x S I -1 p ˙ x
64 60 61 62 63 syl3anc K HL W H S B S p D p x S I x ¬ p I G S I -1 p ˙ G S x S I -1 p ˙ x
65 58 64 mpbird K HL W H S B S p D p x S I x ¬ p I G S I -1 p ˙ G S
66 60 62 22 syl2anc K HL W H S B S p D p x S I x ¬ p I G S G S B
67 1 2 6 7 dihord K HL W H I -1 p B G S B I I -1 p I G S I -1 p ˙ G S
68 31 61 66 67 syl3anc K HL W H S B S p D p x S I x ¬ p I G S I I -1 p I G S I -1 p ˙ G S
69 65 68 mpbird K HL W H S B S p D p x S I x ¬ p I G S I I -1 p I G S
70 36 69 eqsstrrd K HL W H S B S p D p x S I x ¬ p I G S p I G S
71 simp3r K HL W H S B S p D p x S I x ¬ p I G S ¬ p I G S
72 70 71 pm2.21fal K HL W H S B S p D p x S I x ¬ p I G S
73 72 rexlimdv3a K HL W H S B S p D p x S I x ¬ p I G S
74 30 73 syld K HL W H S B S I G S x S I x
75 15 74 mtoi K HL W H S B S ¬ I G S x S I x
76 dfpss3 I G S x S I x I G S x S I x ¬ x S I x I G S
77 76 notbii ¬ I G S x S I x ¬ I G S x S I x ¬ x S I x I G S
78 iman I G S x S I x x S I x I G S ¬ I G S x S I x ¬ x S I x I G S
79 anclb I G S x S I x x S I x I G S I G S x S I x I G S x S I x x S I x I G S
80 77 78 79 3bitr2i ¬ I G S x S I x I G S x S I x I G S x S I x x S I x I G S
81 75 80 sylib K HL W H S B S I G S x S I x I G S x S I x x S I x I G S
82 14 81 mpd K HL W H S B S I G S x S I x x S I x I G S
83 eqss I G S = x S I x I G S x S I x x S I x I G S
84 82 83 sylibr K HL W H S B S I G S = x S I x