Metamath Proof Explorer


Theorem dihintcl

Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dihintcl.h H = LHyp K
dihintcl.i I = DIsoH K W
Assertion dihintcl K HL W H S ran I S S ran I

Proof

Step Hyp Ref Expression
1 dihintcl.h H = LHyp K
2 dihintcl.i I = DIsoH K W
3 eqid Base K = Base K
4 3 1 2 dihfn K HL W H I Fn Base K
5 3 1 2 dihdm K HL W H dom I = Base K
6 5 fneq2d K HL W H I Fn dom I I Fn Base K
7 4 6 mpbird K HL W H I Fn dom I
8 7 adantr K HL W H S ran I S I Fn dom I
9 cnvimass I -1 S dom I
10 fnssres I Fn dom I I -1 S dom I I I -1 S Fn I -1 S
11 8 9 10 sylancl K HL W H S ran I S I I -1 S Fn I -1 S
12 fniinfv I I -1 S Fn I -1 S y I -1 S I I -1 S y = ran I I -1 S
13 11 12 syl K HL W H S ran I S y I -1 S I I -1 S y = ran I I -1 S
14 df-ima I I -1 S = ran I I -1 S
15 4 adantr K HL W H S ran I S I Fn Base K
16 dffn4 I Fn Base K I : Base K onto ran I
17 15 16 sylib K HL W H S ran I S I : Base K onto ran I
18 simprl K HL W H S ran I S S ran I
19 foimacnv I : Base K onto ran I S ran I I I -1 S = S
20 17 18 19 syl2anc K HL W H S ran I S I I -1 S = S
21 14 20 syl5eqr K HL W H S ran I S ran I I -1 S = S
22 21 inteqd K HL W H S ran I S ran I I -1 S = S
23 13 22 eqtrd K HL W H S ran I S y I -1 S I I -1 S y = S
24 simpl K HL W H S ran I S K HL W H
25 5 adantr K HL W H S ran I S dom I = Base K
26 9 25 sseqtrid K HL W H S ran I S I -1 S Base K
27 simprr K HL W H S ran I S S
28 n0 S y y S
29 27 28 sylib K HL W H S ran I S y y S
30 18 sselda K HL W H S ran I S y S y ran I
31 25 fneq2d K HL W H S ran I S I Fn dom I I Fn Base K
32 15 31 mpbird K HL W H S ran I S I Fn dom I
33 32 adantr K HL W H S ran I S y S I Fn dom I
34 fvelrnb I Fn dom I y ran I x dom I I x = y
35 33 34 syl K HL W H S ran I S y S y ran I x dom I I x = y
36 30 35 mpbid K HL W H S ran I S y S x dom I I x = y
37 fnfun I Fn Base K Fun I
38 15 37 syl K HL W H S ran I S Fun I
39 fvimacnv Fun I x dom I I x S x I -1 S
40 38 39 sylan K HL W H S ran I S x dom I I x S x I -1 S
41 ne0i x I -1 S I -1 S
42 40 41 syl6bi K HL W H S ran I S x dom I I x S I -1 S
43 42 ex K HL W H S ran I S x dom I I x S I -1 S
44 eleq1 I x = y I x S y S
45 44 biimprd I x = y y S I x S
46 45 imim1d I x = y I x S I -1 S y S I -1 S
47 43 46 syl9 K HL W H S ran I S I x = y x dom I y S I -1 S
48 47 com24 K HL W H S ran I S y S x dom I I x = y I -1 S
49 48 imp K HL W H S ran I S y S x dom I I x = y I -1 S
50 49 rexlimdv K HL W H S ran I S y S x dom I I x = y I -1 S
51 36 50 mpd K HL W H S ran I S y S I -1 S
52 29 51 exlimddv K HL W H S ran I S I -1 S
53 eqid glb K = glb K
54 3 53 1 2 dihglb K HL W H I -1 S Base K I -1 S I glb K I -1 S = y I -1 S I y
55 24 26 52 54 syl12anc K HL W H S ran I S I glb K I -1 S = y I -1 S I y
56 fvres y I -1 S I I -1 S y = I y
57 56 iineq2i y I -1 S I I -1 S y = y I -1 S I y
58 55 57 syl6eqr K HL W H S ran I S I glb K I -1 S = y I -1 S I I -1 S y
59 hlclat K HL K CLat
60 59 ad2antrr K HL W H S ran I S K CLat
61 3 53 clatglbcl K CLat I -1 S Base K glb K I -1 S Base K
62 60 26 61 syl2anc K HL W H S ran I S glb K I -1 S Base K
63 3 1 2 dihcl K HL W H glb K I -1 S Base K I glb K I -1 S ran I
64 62 63 syldan K HL W H S ran I S I glb K I -1 S ran I
65 58 64 eqeltrrd K HL W H S ran I S y I -1 S I I -1 S y ran I
66 23 65 eqeltrrd K HL W H S ran I S S ran I