Metamath Proof Explorer


Theorem dihjat

Description: Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjat.h H = LHyp K
dihjat.j ˙ = join K
dihjat.a A = Atoms K
dihjat.u U = DVecH K W
dihjat.s ˙ = LSSum U
dihjat.i I = DIsoH K W
dihjat.k φ K HL W H
dihjat.p φ P A
dihjat.q φ Q A
Assertion dihjat φ I P ˙ Q = I P ˙ I Q

Proof

Step Hyp Ref Expression
1 dihjat.h H = LHyp K
2 dihjat.j ˙ = join K
3 dihjat.a A = Atoms K
4 dihjat.u U = DVecH K W
5 dihjat.s ˙ = LSSum U
6 dihjat.i I = DIsoH K W
7 dihjat.k φ K HL W H
8 dihjat.p φ P A
9 dihjat.q φ Q A
10 eqid K = K
11 7 adantr φ P K W Q K W K HL W H
12 8 adantr φ P K W Q K W P A
13 simprl φ P K W Q K W P K W
14 12 13 jca φ P K W Q K W P A P K W
15 9 adantr φ P K W Q K W Q A
16 simprr φ P K W Q K W Q K W
17 15 16 jca φ P K W Q K W Q A Q K W
18 10 1 2 3 4 5 6 11 14 17 dihjatb φ P K W Q K W I P ˙ Q = I P ˙ I Q
19 eqid Base K = Base K
20 7 adantr φ P K W ¬ Q K W K HL W H
21 19 3 atbase P A P Base K
22 8 21 syl φ P Base K
23 22 adantr φ P K W ¬ Q K W P Base K
24 simprl φ P K W ¬ Q K W P K W
25 23 24 jca φ P K W ¬ Q K W P Base K P K W
26 9 adantr φ P K W ¬ Q K W Q A
27 simprr φ P K W ¬ Q K W ¬ Q K W
28 26 27 jca φ P K W ¬ Q K W Q A ¬ Q K W
29 19 10 1 2 3 4 5 6 20 25 28 dihjatc φ P K W ¬ Q K W I P ˙ Q = I P ˙ I Q
30 7 adantr φ ¬ P K W Q K W K HL W H
31 19 3 atbase Q A Q Base K
32 9 31 syl φ Q Base K
33 32 adantr φ ¬ P K W Q K W Q Base K
34 simprr φ ¬ P K W Q K W Q K W
35 33 34 jca φ ¬ P K W Q K W Q Base K Q K W
36 8 adantr φ ¬ P K W Q K W P A
37 simprl φ ¬ P K W Q K W ¬ P K W
38 36 37 jca φ ¬ P K W Q K W P A ¬ P K W
39 19 10 1 2 3 4 5 6 30 35 38 dihjatc φ ¬ P K W Q K W I Q ˙ P = I Q ˙ I P
40 7 simpld φ K HL
41 2 3 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
42 40 8 9 41 syl3anc φ P ˙ Q = Q ˙ P
43 42 fveq2d φ I P ˙ Q = I Q ˙ P
44 43 adantr φ ¬ P K W Q K W I P ˙ Q = I Q ˙ P
45 1 4 7 dvhlmod φ U LMod
46 lmodabl U LMod U Abel
47 45 46 syl φ U Abel
48 eqid LSubSp U = LSubSp U
49 48 lsssssubg U LMod LSubSp U SubGrp U
50 45 49 syl φ LSubSp U SubGrp U
51 19 1 6 4 48 dihlss K HL W H P Base K I P LSubSp U
52 7 22 51 syl2anc φ I P LSubSp U
53 50 52 sseldd φ I P SubGrp U
54 19 1 6 4 48 dihlss K HL W H Q Base K I Q LSubSp U
55 7 32 54 syl2anc φ I Q LSubSp U
56 50 55 sseldd φ I Q SubGrp U
57 5 lsmcom U Abel I P SubGrp U I Q SubGrp U I P ˙ I Q = I Q ˙ I P
58 47 53 56 57 syl3anc φ I P ˙ I Q = I Q ˙ I P
59 58 adantr φ ¬ P K W Q K W I P ˙ I Q = I Q ˙ I P
60 39 44 59 3eqtr4d φ ¬ P K W Q K W I P ˙ Q = I P ˙ I Q
61 7 adantr φ ¬ P K W ¬ Q K W K HL W H
62 8 adantr φ ¬ P K W ¬ Q K W P A
63 simprl φ ¬ P K W ¬ Q K W ¬ P K W
64 62 63 jca φ ¬ P K W ¬ Q K W P A ¬ P K W
65 9 adantr φ ¬ P K W ¬ Q K W Q A
66 simprr φ ¬ P K W ¬ Q K W ¬ Q K W
67 65 66 jca φ ¬ P K W ¬ Q K W Q A ¬ Q K W
68 10 1 2 3 4 5 6 61 64 67 dihjatcc φ ¬ P K W ¬ Q K W I P ˙ Q = I P ˙ I Q
69 18 29 60 68 4casesdan φ I P ˙ Q = I P ˙ I Q