| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem4.b |
|
| 2 |
|
dihmeetlem4.l |
|
| 3 |
|
dihmeetlem4.m |
|
| 4 |
|
dihmeetlem4.a |
|
| 5 |
|
dihmeetlem4.h |
|
| 6 |
|
dihmeetlem4.i |
|
| 7 |
|
dihmeetlem4.u |
|
| 8 |
|
dihmeetlem4.z |
|
| 9 |
|
dihmeetlem4.g |
|
| 10 |
|
dihmeetlem4.p |
|
| 11 |
|
dihmeetlem4.t |
|
| 12 |
|
dihmeetlem4.r |
|
| 13 |
|
dihmeetlem4.e |
|
| 14 |
|
dihmeetlem4.o |
|
| 15 |
5 6
|
dihvalrel |
|
| 16 |
|
relin1 |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
5 6
|
dihvalrel |
|
| 20 |
|
eqid |
|
| 21 |
20 5 6 7 8
|
dih0 |
|
| 22 |
21
|
releqd |
|
| 23 |
19 22
|
mpbid |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
|
id |
|
| 26 |
|
elin |
|
| 27 |
|
vex |
|
| 28 |
|
vex |
|
| 29 |
2 4 5 10 11 13 6 9 27 28
|
dihopelvalcqat |
|
| 30 |
29
|
3adant2 |
|
| 31 |
|
simp1 |
|
| 32 |
|
simp1l |
|
| 33 |
32
|
hllatd |
|
| 34 |
|
simp2l |
|
| 35 |
|
simp1r |
|
| 36 |
1 5
|
lhpbase |
|
| 37 |
35 36
|
syl |
|
| 38 |
1 3
|
latmcl |
|
| 39 |
33 34 37 38
|
syl3anc |
|
| 40 |
1 2 3
|
latmle2 |
|
| 41 |
33 34 37 40
|
syl3anc |
|
| 42 |
1 2 5 11 12 14 6
|
dihopelvalbN |
|
| 43 |
31 39 41 42
|
syl12anc |
|
| 44 |
30 43
|
anbi12d |
|
| 45 |
|
simprll |
|
| 46 |
|
simprrr |
|
| 47 |
46
|
fveq1d |
|
| 48 |
|
simpl1 |
|
| 49 |
2 4 5 10
|
lhpocnel2 |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
simpl3 |
|
| 52 |
2 4 5 11 9
|
ltrniotacl |
|
| 53 |
48 50 51 52
|
syl3anc |
|
| 54 |
14 1
|
tendo02 |
|
| 55 |
53 54
|
syl |
|
| 56 |
45 47 55
|
3eqtrd |
|
| 57 |
56 46
|
jca |
|
| 58 |
|
simpl1 |
|
| 59 |
58 49
|
syl |
|
| 60 |
|
simpl3 |
|
| 61 |
58 59 60 52
|
syl3anc |
|
| 62 |
61 54
|
syl |
|
| 63 |
|
simprr |
|
| 64 |
63
|
fveq1d |
|
| 65 |
|
simprl |
|
| 66 |
62 64 65
|
3eqtr4rd |
|
| 67 |
1 5 11 13 14
|
tendo0cl |
|
| 68 |
58 67
|
syl |
|
| 69 |
63 68
|
eqeltrd |
|
| 70 |
1 5 11
|
idltrn |
|
| 71 |
58 70
|
syl |
|
| 72 |
65 71
|
eqeltrd |
|
| 73 |
65
|
fveq2d |
|
| 74 |
1 20 5 12
|
trlid0 |
|
| 75 |
58 74
|
syl |
|
| 76 |
73 75
|
eqtrd |
|
| 77 |
|
simpl1l |
|
| 78 |
|
hlatl |
|
| 79 |
77 78
|
syl |
|
| 80 |
39
|
adantr |
|
| 81 |
1 2 20
|
atl0le |
|
| 82 |
79 80 81
|
syl2anc |
|
| 83 |
76 82
|
eqbrtrd |
|
| 84 |
72 83 63
|
jca31 |
|
| 85 |
66 69 84
|
jca31 |
|
| 86 |
57 85
|
impbida |
|
| 87 |
44 86
|
bitrd |
|
| 88 |
|
opex |
|
| 89 |
88
|
elsn |
|
| 90 |
27 28
|
opth |
|
| 91 |
89 90
|
bitr2i |
|
| 92 |
87 91
|
bitrdi |
|
| 93 |
1 5 11 7 8 14
|
dvh0g |
|
| 94 |
93
|
3ad2ant1 |
|
| 95 |
94
|
sneqd |
|
| 96 |
95
|
eleq2d |
|
| 97 |
92 96
|
bitr4d |
|
| 98 |
26 97
|
bitrid |
|
| 99 |
98
|
eqrelrdv2 |
|
| 100 |
18 24 25 99
|
syl21anc |
|