Metamath Proof Explorer


Theorem dilsetN

Description: The set of dilations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a A = Atoms K
dilset.s S = PSubSp K
dilset.w W = WAtoms K
dilset.m M = PAut K
dilset.l L = Dil K
Assertion dilsetN K B D A L D = f M | x S x W D f x = x

Proof

Step Hyp Ref Expression
1 dilset.a A = Atoms K
2 dilset.s S = PSubSp K
3 dilset.w W = WAtoms K
4 dilset.m M = PAut K
5 dilset.l L = Dil K
6 1 2 3 4 5 dilfsetN K B L = d A f M | x S x W d f x = x
7 6 fveq1d K B L D = d A f M | x S x W d f x = x D
8 fveq2 d = D W d = W D
9 8 sseq2d d = D x W d x W D
10 9 imbi1d d = D x W d f x = x x W D f x = x
11 10 ralbidv d = D x S x W d f x = x x S x W D f x = x
12 11 rabbidv d = D f M | x S x W d f x = x = f M | x S x W D f x = x
13 eqid d A f M | x S x W d f x = x = d A f M | x S x W d f x = x
14 4 fvexi M V
15 14 rabex f M | x S x W D f x = x V
16 12 13 15 fvmpt D A d A f M | x S x W d f x = x D = f M | x S x W D f x = x
17 7 16 sylan9eq K B D A L D = f M | x S x W D f x = x