Step |
Hyp |
Ref |
Expression |
1 |
|
dimkerim.0 |
|
2 |
|
dimkerim.k |
|
3 |
|
dimkerim.i |
|
4 |
1 2
|
kerlmhm |
|
5 |
|
eqid |
|
6 |
5
|
lbsex |
|
7 |
4 6
|
syl |
|
8 |
|
n0 |
|
9 |
7 8
|
sylib |
|
10 |
|
simpllr |
|
11 |
|
vex |
|
12 |
11
|
difexi |
|
13 |
12
|
a1i |
|
14 |
|
disjdif |
|
15 |
14
|
a1i |
|
16 |
|
hashunx |
|
17 |
10 13 15 16
|
syl3anc |
|
18 |
|
simp-4l |
|
19 |
|
simpr |
|
20 |
|
undif |
|
21 |
19 20
|
sylib |
|
22 |
|
simplr |
|
23 |
21 22
|
eqeltrd |
|
24 |
|
eqid |
|
25 |
24
|
dimval |
|
26 |
18 23 25
|
syl2anc |
|
27 |
4
|
ad3antrrr |
|
28 |
5
|
dimval |
|
29 |
27 10 28
|
syl2anc |
|
30 |
3
|
imlmhm |
|
31 |
30
|
ad3antrrr |
|
32 |
|
simp-4r |
|
33 |
|
lmhmlmod2 |
|
34 |
32 33
|
syl |
|
35 |
|
lmhmrnlss |
|
36 |
32 35
|
syl |
|
37 |
|
df-ima |
|
38 |
|
imassrn |
|
39 |
38
|
a1i |
|
40 |
37 39
|
eqsstrrid |
|
41 |
|
lveclmod |
|
42 |
41
|
ad4antr |
|
43 |
24
|
lbslinds |
|
44 |
43 22
|
sselid |
|
45 |
|
difssd |
|
46 |
|
lindsss |
|
47 |
42 44 45 46
|
syl3anc |
|
48 |
|
eqid |
|
49 |
48
|
linds1 |
|
50 |
47 49
|
syl |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
48 51 52
|
lspcl |
|
54 |
42 50 53
|
syl2anc |
|
55 |
|
eqid |
|
56 |
51 55
|
reslmhm |
|
57 |
32 54 56
|
syl2anc |
|
58 |
|
eqid |
|
59 |
3 58
|
reslmhm2b |
|
60 |
59
|
biimpa |
|
61 |
34 36 40 57 60
|
syl31anc |
|
62 |
|
lmghm |
|
63 |
62
|
ad4antlr |
|
64 |
48 24
|
lbsss |
|
65 |
22 64
|
syl |
|
66 |
45 65
|
sstrd |
|
67 |
42 66 53
|
syl2anc |
|
68 |
51
|
lsssubg |
|
69 |
42 67 68
|
syl2anc |
|
70 |
55
|
resghm |
|
71 |
63 69 70
|
syl2anc |
|
72 |
|
eqid |
|
73 |
48 72
|
lmhmf |
|
74 |
73
|
ad4antlr |
|
75 |
74
|
ffnd |
|
76 |
48 52
|
lspssv |
|
77 |
42 66 76
|
syl2anc |
|
78 |
75 77
|
fnssresd |
|
79 |
|
fniniseg |
|
80 |
79
|
biimpa |
|
81 |
78 80
|
sylan |
|
82 |
81
|
simpld |
|
83 |
75
|
adantr |
|
84 |
77
|
adantr |
|
85 |
84 82
|
sseldd |
|
86 |
82
|
fvresd |
|
87 |
81
|
simprd |
|
88 |
86 87
|
eqtr3d |
|
89 |
|
fniniseg |
|
90 |
89
|
biimpar |
|
91 |
83 85 88 90
|
syl12anc |
|
92 |
82 91
|
elind |
|
93 |
|
simpr |
|
94 |
|
eqid |
|
95 |
|
eqid |
|
96 |
94 5 95
|
lbssp |
|
97 |
93 96
|
syl |
|
98 |
41
|
ad2antrr |
|
99 |
|
eqid |
|
100 |
99 1 51
|
lmhmkerlss |
|
101 |
100
|
ad2antlr |
|
102 |
94 5
|
lbsss |
|
103 |
93 102
|
syl |
|
104 |
|
cnvimass |
|
105 |
104 73
|
fssdm |
|
106 |
2 48
|
ressbas2 |
|
107 |
105 106
|
syl |
|
108 |
107
|
ad2antlr |
|
109 |
103 108
|
sseqtrrd |
|
110 |
2 52 95 51
|
lsslsp |
|
111 |
110
|
eqcomd |
|
112 |
98 101 109 111
|
syl3anc |
|
113 |
97 112 108
|
3eqtr4d |
|
114 |
113
|
ad2antrr |
|
115 |
114
|
ineq2d |
|
116 |
|
eqid |
|
117 |
24 52 116
|
lbsdiflsp0 |
|
118 |
117
|
ad5ant145 |
|
119 |
115 118
|
eqtr3d |
|
120 |
119
|
adantr |
|
121 |
92 120
|
eleqtrd |
|
122 |
121
|
ex |
|
123 |
122
|
ssrdv |
|
124 |
116 48 52
|
0ellsp |
|
125 |
42 66 124
|
syl2anc |
|
126 |
|
fvexd |
|
127 |
125
|
fvresd |
|
128 |
116 1
|
ghmid |
|
129 |
62 128
|
syl |
|
130 |
129
|
ad4antlr |
|
131 |
127 130
|
eqtrd |
|
132 |
|
elsng |
|
133 |
132
|
biimpar |
|
134 |
126 131 133
|
syl2anc |
|
135 |
78 125 134
|
elpreimad |
|
136 |
135
|
snssd |
|
137 |
123 136
|
eqssd |
|
138 |
|
lmodgrp |
|
139 |
|
grpmnd |
|
140 |
42 138 139
|
3syl |
|
141 |
55 48 116
|
ress0g |
|
142 |
140 125 77 141
|
syl3anc |
|
143 |
142
|
sneqd |
|
144 |
137 143
|
eqtrd |
|
145 |
|
eqid |
|
146 |
|
eqid |
|
147 |
145 72 146 1
|
kerf1ghm |
|
148 |
147
|
biimpar |
|
149 |
71 144 148
|
syl2anc |
|
150 |
|
eqidd |
|
151 |
55 48
|
ressbas2 |
|
152 |
77 151
|
syl |
|
153 |
|
eqidd |
|
154 |
150 152 153
|
f1eq123d |
|
155 |
149 154
|
mpbird |
|
156 |
|
f1ssr |
|
157 |
155 40 156
|
syl2anc |
|
158 |
|
f1f1orn |
|
159 |
157 158
|
syl |
|
160 |
|
simp-4r |
|
161 |
75
|
ad6antr |
|
162 |
|
simpllr |
|
163 |
113
|
ad8antr |
|
164 |
162 163
|
eleqtrd |
|
165 |
|
fniniseg |
|
166 |
165
|
simplbda |
|
167 |
161 164 166
|
syl2anc |
|
168 |
167
|
oveq1d |
|
169 |
|
simpr |
|
170 |
169
|
fveq2d |
|
171 |
63
|
ad6antr |
|
172 |
48 52
|
lspss |
|
173 |
42 65 19 172
|
syl3anc |
|
174 |
48 24 52
|
lbssp |
|
175 |
22 174
|
syl |
|
176 |
173 175
|
sseqtrd |
|
177 |
176
|
ad3antrrr |
|
178 |
177
|
ad3antrrr |
|
179 |
178 162
|
sseldd |
|
180 |
77
|
ad3antrrr |
|
181 |
180
|
ad3antrrr |
|
182 |
|
simplr |
|
183 |
181 182
|
sseldd |
|
184 |
|
eqid |
|
185 |
|
eqid |
|
186 |
48 184 185
|
ghmlin |
|
187 |
171 179 183 186
|
syl3anc |
|
188 |
170 187
|
eqtr2d |
|
189 |
|
lmhmlvec2 |
|
190 |
189
|
lvecgrpd |
|
191 |
190
|
ad9antr |
|
192 |
74
|
ad6antr |
|
193 |
192 183
|
ffvelcdmd |
|
194 |
72 185 1 191 193
|
grplidd |
|
195 |
168 188 194
|
3eqtr3d |
|
196 |
160 195
|
eqtr3d |
|
197 |
161 183 182
|
fnfvimad |
|
198 |
196 197
|
eqeltrd |
|
199 |
|
simp-7l |
|
200 |
|
simplr |
|
201 |
109
|
ad2antrr |
|
202 |
105
|
ad4antlr |
|
203 |
201 202
|
sstrd |
|
204 |
|
eqid |
|
205 |
48 52 204
|
lsmsp2 |
|
206 |
42 203 66 205
|
syl3anc |
|
207 |
21
|
fveq2d |
|
208 |
206 207 175
|
3eqtrrd |
|
209 |
208
|
ad3antrrr |
|
210 |
200 209
|
eleqtrd |
|
211 |
48 184 204
|
lsmelvalx |
|
212 |
211
|
biimpa |
|
213 |
199 177 180 210 212
|
syl31anc |
|
214 |
198 213
|
r19.29vva |
|
215 |
|
fvelrnb |
|
216 |
215
|
biimpa |
|
217 |
75 216
|
sylan |
|
218 |
214 217
|
r19.29a |
|
219 |
39 218
|
eqelssd |
|
220 |
37 219
|
eqtr3id |
|
221 |
220
|
f1oeq3d |
|
222 |
159 221
|
mpbid |
|
223 |
42 50 76
|
syl2anc |
|
224 |
223 151
|
syl |
|
225 |
|
frn |
|
226 |
3 72
|
ressbas2 |
|
227 |
73 225 226
|
3syl |
|
228 |
32 227
|
syl |
|
229 |
150 224 228
|
f1oeq123d |
|
230 |
222 229
|
mpbid |
|
231 |
|
eqid |
|
232 |
145 231
|
islmim |
|
233 |
61 230 232
|
sylanbrc |
|
234 |
48 52
|
lspssid |
|
235 |
42 50 234
|
syl2anc |
|
236 |
51 55
|
lsslinds |
|
237 |
236
|
biimpar |
|
238 |
42 67 235 47 237
|
syl31anc |
|
239 |
|
eqid |
|
240 |
55 52 239 51
|
lsslsp |
|
241 |
240
|
eqcomd |
|
242 |
42 54 235 241
|
syl3anc |
|
243 |
242 224
|
eqtr3d |
|
244 |
|
eqid |
|
245 |
145 244 239
|
islbs4 |
|
246 |
238 243 245
|
sylanbrc |
|
247 |
|
eqid |
|
248 |
244 247
|
lmimlbs |
|
249 |
233 246 248
|
syl2anc |
|
250 |
247
|
dimval |
|
251 |
31 249 250
|
syl2anc |
|
252 |
|
f1imaeng |
|
253 |
|
hasheni |
|
254 |
252 253
|
syl |
|
255 |
157 235 47 254
|
syl3anc |
|
256 |
251 255
|
eqtrd |
|
257 |
29 256
|
oveq12d |
|
258 |
17 26 257
|
3eqtr4d |
|
259 |
5
|
lbslinds |
|
260 |
259 93
|
sselid |
|
261 |
51 2
|
lsslinds |
|
262 |
261
|
biimpa |
|
263 |
98 101 109 260 262
|
syl31anc |
|
264 |
24
|
islinds4 |
|
265 |
264
|
ad2antrr |
|
266 |
263 265
|
mpbid |
|
267 |
258 266
|
r19.29a |
|
268 |
9 267
|
exlimddv |
|