Metamath Proof Explorer


Theorem dip0l

Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 X = BaseSet U
dip0r.5 Z = 0 vec U
dip0r.7 P = 𝑖OLD U
Assertion dip0l U NrmCVec A X Z P A = 0

Proof

Step Hyp Ref Expression
1 dip0r.1 X = BaseSet U
2 dip0r.5 Z = 0 vec U
3 dip0r.7 P = 𝑖OLD U
4 1 2 nvzcl U NrmCVec Z X
5 4 adantr U NrmCVec A X Z X
6 1 3 dipcj U NrmCVec A X Z X A P Z = Z P A
7 5 6 mpd3an3 U NrmCVec A X A P Z = Z P A
8 1 2 3 dip0r U NrmCVec A X A P Z = 0
9 8 fveq2d U NrmCVec A X A P Z = 0
10 cj0 0 = 0
11 9 10 eqtrdi U NrmCVec A X A P Z = 0
12 7 11 eqtr3d U NrmCVec A X Z P A = 0