| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dip0r.1 |
|
| 2 |
|
dip0r.5 |
|
| 3 |
|
dip0r.7 |
|
| 4 |
1 2
|
nvzcl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1 6 7 8 3
|
ipval2 |
|
| 10 |
5 9
|
mpd3an3 |
|
| 11 |
|
neg1cn |
|
| 12 |
7 2
|
nvsz |
|
| 13 |
11 12
|
mpan2 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
oveq2d |
|
| 16 |
15
|
fveq2d |
|
| 17 |
16
|
oveq1d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
1 6 7 8 3
|
ipval2lem3 |
|
| 20 |
5 19
|
mpd3an3 |
|
| 21 |
20
|
recnd |
|
| 22 |
21
|
subidd |
|
| 23 |
18 22
|
eqtrd |
|
| 24 |
|
negicn |
|
| 25 |
7 2
|
nvsz |
|
| 26 |
24 25
|
mpan2 |
|
| 27 |
|
ax-icn |
|
| 28 |
7 2
|
nvsz |
|
| 29 |
27 28
|
mpan2 |
|
| 30 |
26 29
|
eqtr4d |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
oveq2d |
|
| 33 |
32
|
fveq2d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
oveq2d |
|
| 36 |
1 6 7 8 3
|
ipval2lem4 |
|
| 37 |
27 36
|
mpan2 |
|
| 38 |
5 37
|
mpd3an3 |
|
| 39 |
38
|
subidd |
|
| 40 |
35 39
|
eqtrd |
|
| 41 |
40
|
oveq2d |
|
| 42 |
23 41
|
oveq12d |
|
| 43 |
|
it0e0 |
|
| 44 |
43
|
oveq2i |
|
| 45 |
|
00id |
|
| 46 |
44 45
|
eqtri |
|
| 47 |
42 46
|
eqtrdi |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
4cn |
|
| 50 |
|
4ne0 |
|
| 51 |
49 50
|
div0i |
|
| 52 |
48 51
|
eqtrdi |
|
| 53 |
10 52
|
eqtrd |
|