Step |
Hyp |
Ref |
Expression |
1 |
|
dip0r.1 |
|
2 |
|
dip0r.5 |
|
3 |
|
dip0r.7 |
|
4 |
1 2
|
nvzcl |
|
5 |
4
|
adantr |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 6 7 8 3
|
ipval2 |
|
10 |
5 9
|
mpd3an3 |
|
11 |
|
neg1cn |
|
12 |
7 2
|
nvsz |
|
13 |
11 12
|
mpan2 |
|
14 |
13
|
adantr |
|
15 |
14
|
oveq2d |
|
16 |
15
|
fveq2d |
|
17 |
16
|
oveq1d |
|
18 |
17
|
oveq2d |
|
19 |
1 6 7 8 3
|
ipval2lem3 |
|
20 |
5 19
|
mpd3an3 |
|
21 |
20
|
recnd |
|
22 |
21
|
subidd |
|
23 |
18 22
|
eqtrd |
|
24 |
|
negicn |
|
25 |
7 2
|
nvsz |
|
26 |
24 25
|
mpan2 |
|
27 |
|
ax-icn |
|
28 |
7 2
|
nvsz |
|
29 |
27 28
|
mpan2 |
|
30 |
26 29
|
eqtr4d |
|
31 |
30
|
adantr |
|
32 |
31
|
oveq2d |
|
33 |
32
|
fveq2d |
|
34 |
33
|
oveq1d |
|
35 |
34
|
oveq2d |
|
36 |
1 6 7 8 3
|
ipval2lem4 |
|
37 |
27 36
|
mpan2 |
|
38 |
5 37
|
mpd3an3 |
|
39 |
38
|
subidd |
|
40 |
35 39
|
eqtrd |
|
41 |
40
|
oveq2d |
|
42 |
23 41
|
oveq12d |
|
43 |
|
it0e0 |
|
44 |
43
|
oveq2i |
|
45 |
|
00id |
|
46 |
44 45
|
eqtri |
|
47 |
42 46
|
eqtrdi |
|
48 |
47
|
oveq1d |
|
49 |
|
4cn |
|
50 |
|
4ne0 |
|
51 |
49 50
|
div0i |
|
52 |
48 51
|
eqtrdi |
|
53 |
10 52
|
eqtrd |
|