Step |
Hyp |
Ref |
Expression |
1 |
|
ipcl.1 |
|
2 |
|
ipcl.7 |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
1 3 4 5 2
|
ipval2 |
|
7 |
6
|
fveq2d |
|
8 |
1 3 4 5 2
|
ipval2 |
|
9 |
8
|
3com23 |
|
10 |
1 3 4 5 2
|
ipval2lem3 |
|
11 |
10
|
recnd |
|
12 |
|
neg1cn |
|
13 |
1 3 4 5 2
|
ipval2lem4 |
|
14 |
12 13
|
mpan2 |
|
15 |
11 14
|
subcld |
|
16 |
|
ax-icn |
|
17 |
1 3 4 5 2
|
ipval2lem4 |
|
18 |
16 17
|
mpan2 |
|
19 |
|
negicn |
|
20 |
1 3 4 5 2
|
ipval2lem4 |
|
21 |
19 20
|
mpan2 |
|
22 |
18 21
|
subcld |
|
23 |
|
mulcl |
|
24 |
16 22 23
|
sylancr |
|
25 |
15 24
|
addcld |
|
26 |
|
4cn |
|
27 |
|
4ne0 |
|
28 |
|
cjdiv |
|
29 |
26 27 28
|
mp3an23 |
|
30 |
25 29
|
syl |
|
31 |
|
4re |
|
32 |
|
cjre |
|
33 |
31 32
|
ax-mp |
|
34 |
33
|
oveq2i |
|
35 |
1 3 4 5 2
|
ipval2lem2 |
|
36 |
12 35
|
mpan2 |
|
37 |
10 36
|
resubcld |
|
38 |
1 3 4 5 2
|
ipval2lem2 |
|
39 |
16 38
|
mpan2 |
|
40 |
1 3 4 5 2
|
ipval2lem2 |
|
41 |
19 40
|
mpan2 |
|
42 |
39 41
|
resubcld |
|
43 |
|
cjreim |
|
44 |
37 42 43
|
syl2anc |
|
45 |
|
submul2 |
|
46 |
16 45
|
mp3an2 |
|
47 |
15 22 46
|
syl2anc |
|
48 |
1 3
|
nvcom |
|
49 |
48
|
fveq2d |
|
50 |
49
|
oveq1d |
|
51 |
1 3 4 5
|
nvdif |
|
52 |
51
|
oveq1d |
|
53 |
50 52
|
oveq12d |
|
54 |
18 21
|
negsubdi2d |
|
55 |
1 3 4 5
|
nvpi |
|
56 |
55
|
3com23 |
|
57 |
56
|
eqcomd |
|
58 |
57
|
oveq1d |
|
59 |
1 3 4 5
|
nvpi |
|
60 |
59
|
oveq1d |
|
61 |
58 60
|
oveq12d |
|
62 |
54 61
|
eqtrd |
|
63 |
62
|
oveq2d |
|
64 |
53 63
|
oveq12d |
|
65 |
44 47 64
|
3eqtrd |
|
66 |
65
|
oveq1d |
|
67 |
34 66
|
syl5eq |
|
68 |
30 67
|
eqtrd |
|
69 |
9 68
|
eqtr4d |
|
70 |
7 69
|
eqtr4d |
|