Metamath Proof Explorer


Theorem dipcl

Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X = BaseSet U
ipcl.7 P = 𝑖OLD U
Assertion dipcl U NrmCVec A X B X A P B

Proof

Step Hyp Ref Expression
1 ipcl.1 X = BaseSet U
2 ipcl.7 P = 𝑖OLD U
3 eqid + v U = + v U
4 eqid 𝑠OLD U = 𝑠OLD U
5 eqid norm CV U = norm CV U
6 1 3 4 5 2 ipval U NrmCVec A X B X A P B = k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 4
7 fzfid U NrmCVec A X B X 1 4 Fin
8 ax-icn i
9 elfznn k 1 4 k
10 9 nnnn0d k 1 4 k 0
11 expcl i k 0 i k
12 8 10 11 sylancr k 1 4 i k
13 12 adantl U NrmCVec A X B X k 1 4 i k
14 1 3 4 5 2 ipval2lem4 U NrmCVec A X B X i k norm CV U A + v U i k 𝑠OLD U B 2
15 12 14 sylan2 U NrmCVec A X B X k 1 4 norm CV U A + v U i k 𝑠OLD U B 2
16 13 15 mulcld U NrmCVec A X B X k 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2
17 7 16 fsumcl U NrmCVec A X B X k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2
18 4cn 4
19 4ne0 4 0
20 divcl k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 4 4 0 k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 4
21 18 19 20 mp3an23 k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 4
22 17 21 syl U NrmCVec A X B X k = 1 4 i k norm CV U A + v U i k 𝑠OLD U B 2 4
23 6 22 eqeltrd U NrmCVec A X B X A P B