Metamath Proof Explorer


Theorem dipcn

Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dipcn.p P=𝑖OLDU
dipcn.c C=IndMetU
dipcn.j J=MetOpenC
dipcn.k K=TopOpenfld
Assertion dipcn UNrmCVecPJ×tJCnK

Proof

Step Hyp Ref Expression
1 dipcn.p P=𝑖OLDU
2 dipcn.c C=IndMetU
3 dipcn.j J=MetOpenC
4 dipcn.k K=TopOpenfld
5 eqid BaseSetU=BaseSetU
6 eqid +vU=+vU
7 eqid 𝑠OLDU=𝑠OLDU
8 eqid normCVU=normCVU
9 5 6 7 8 1 dipfval UNrmCVecP=xBaseSetU,yBaseSetUk=14iknormCVUx+vUik𝑠OLDUy24
10 5 2 imsxmet UNrmCVecC∞MetBaseSetU
11 3 mopntopon C∞MetBaseSetUJTopOnBaseSetU
12 10 11 syl UNrmCVecJTopOnBaseSetU
13 fzfid UNrmCVec14Fin
14 12 adantr UNrmCVeck14JTopOnBaseSetU
15 4 cnfldtopon KTopOn
16 15 a1i UNrmCVeck14KTopOn
17 ax-icn i
18 elfznn k14k
19 18 adantl UNrmCVeck14k
20 19 nnnn0d UNrmCVeck14k0
21 expcl ik0ik
22 17 20 21 sylancr UNrmCVeck14ik
23 14 14 16 22 cnmpt2c UNrmCVeck14xBaseSetU,yBaseSetUikJ×tJCnK
24 14 14 cnmpt1st UNrmCVeck14xBaseSetU,yBaseSetUxJ×tJCnJ
25 14 14 cnmpt2nd UNrmCVeck14xBaseSetU,yBaseSetUyJ×tJCnJ
26 2 3 7 4 smcn UNrmCVec𝑠OLDUK×tJCnJ
27 26 adantr UNrmCVeck14𝑠OLDUK×tJCnJ
28 14 14 23 25 27 cnmpt22f UNrmCVeck14xBaseSetU,yBaseSetUik𝑠OLDUyJ×tJCnJ
29 2 3 6 vacn UNrmCVec+vUJ×tJCnJ
30 29 adantr UNrmCVeck14+vUJ×tJCnJ
31 14 14 24 28 30 cnmpt22f UNrmCVeck14xBaseSetU,yBaseSetUx+vUik𝑠OLDUyJ×tJCnJ
32 8 2 3 4 nmcnc UNrmCVecnormCVUJCnK
33 32 adantr UNrmCVeck14normCVUJCnK
34 14 14 31 33 cnmpt21f UNrmCVeck14xBaseSetU,yBaseSetUnormCVUx+vUik𝑠OLDUyJ×tJCnK
35 4 sqcn zz2KCnK
36 35 a1i UNrmCVeck14zz2KCnK
37 oveq1 z=normCVUx+vUik𝑠OLDUyz2=normCVUx+vUik𝑠OLDUy2
38 14 14 34 16 36 37 cnmpt21 UNrmCVeck14xBaseSetU,yBaseSetUnormCVUx+vUik𝑠OLDUy2J×tJCnK
39 4 mulcn ×K×tKCnK
40 39 a1i UNrmCVeck14×K×tKCnK
41 14 14 23 38 40 cnmpt22f UNrmCVeck14xBaseSetU,yBaseSetUiknormCVUx+vUik𝑠OLDUy2J×tJCnK
42 4 12 13 12 41 fsum2cn UNrmCVecxBaseSetU,yBaseSetUk=14iknormCVUx+vUik𝑠OLDUy2J×tJCnK
43 15 a1i UNrmCVecKTopOn
44 4cn 4
45 4ne0 40
46 4 divccn 440zz4KCnK
47 44 45 46 mp2an zz4KCnK
48 47 a1i UNrmCVeczz4KCnK
49 oveq1 z=k=14iknormCVUx+vUik𝑠OLDUy2z4=k=14iknormCVUx+vUik𝑠OLDUy24
50 12 12 42 43 48 49 cnmpt21 UNrmCVecxBaseSetU,yBaseSetUk=14iknormCVUx+vUik𝑠OLDUy24J×tJCnK
51 9 50 eqeltrd UNrmCVecPJ×tJCnK