Metamath Proof Explorer


Theorem dipcn

Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dipcn.p P = 𝑖OLD U
dipcn.c C = IndMet U
dipcn.j J = MetOpen C
dipcn.k K = TopOpen fld
Assertion dipcn U NrmCVec P J × t J Cn K

Proof

Step Hyp Ref Expression
1 dipcn.p P = 𝑖OLD U
2 dipcn.c C = IndMet U
3 dipcn.j J = MetOpen C
4 dipcn.k K = TopOpen fld
5 eqid BaseSet U = BaseSet U
6 eqid + v U = + v U
7 eqid 𝑠OLD U = 𝑠OLD U
8 eqid norm CV U = norm CV U
9 5 6 7 8 1 dipfval U NrmCVec P = x BaseSet U , y BaseSet U k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
10 5 2 imsxmet U NrmCVec C ∞Met BaseSet U
11 3 mopntopon C ∞Met BaseSet U J TopOn BaseSet U
12 10 11 syl U NrmCVec J TopOn BaseSet U
13 fzfid U NrmCVec 1 4 Fin
14 12 adantr U NrmCVec k 1 4 J TopOn BaseSet U
15 4 cnfldtopon K TopOn
16 15 a1i U NrmCVec k 1 4 K TopOn
17 ax-icn i
18 elfznn k 1 4 k
19 18 adantl U NrmCVec k 1 4 k
20 19 nnnn0d U NrmCVec k 1 4 k 0
21 expcl i k 0 i k
22 17 20 21 sylancr U NrmCVec k 1 4 i k
23 14 14 16 22 cnmpt2c U NrmCVec k 1 4 x BaseSet U , y BaseSet U i k J × t J Cn K
24 14 14 cnmpt1st U NrmCVec k 1 4 x BaseSet U , y BaseSet U x J × t J Cn J
25 14 14 cnmpt2nd U NrmCVec k 1 4 x BaseSet U , y BaseSet U y J × t J Cn J
26 2 3 7 4 smcn U NrmCVec 𝑠OLD U K × t J Cn J
27 26 adantr U NrmCVec k 1 4 𝑠OLD U K × t J Cn J
28 14 14 23 25 27 cnmpt22f U NrmCVec k 1 4 x BaseSet U , y BaseSet U i k 𝑠OLD U y J × t J Cn J
29 2 3 6 vacn U NrmCVec + v U J × t J Cn J
30 29 adantr U NrmCVec k 1 4 + v U J × t J Cn J
31 14 14 24 28 30 cnmpt22f U NrmCVec k 1 4 x BaseSet U , y BaseSet U x + v U i k 𝑠OLD U y J × t J Cn J
32 8 2 3 4 nmcnc U NrmCVec norm CV U J Cn K
33 32 adantr U NrmCVec k 1 4 norm CV U J Cn K
34 14 14 31 33 cnmpt21f U NrmCVec k 1 4 x BaseSet U , y BaseSet U norm CV U x + v U i k 𝑠OLD U y J × t J Cn K
35 4 sqcn z z 2 K Cn K
36 35 a1i U NrmCVec k 1 4 z z 2 K Cn K
37 oveq1 z = norm CV U x + v U i k 𝑠OLD U y z 2 = norm CV U x + v U i k 𝑠OLD U y 2
38 14 14 34 16 36 37 cnmpt21 U NrmCVec k 1 4 x BaseSet U , y BaseSet U norm CV U x + v U i k 𝑠OLD U y 2 J × t J Cn K
39 4 mulcn × K × t K Cn K
40 39 a1i U NrmCVec k 1 4 × K × t K Cn K
41 14 14 23 38 40 cnmpt22f U NrmCVec k 1 4 x BaseSet U , y BaseSet U i k norm CV U x + v U i k 𝑠OLD U y 2 J × t J Cn K
42 4 12 13 12 41 fsum2cn U NrmCVec x BaseSet U , y BaseSet U k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 J × t J Cn K
43 15 a1i U NrmCVec K TopOn
44 4cn 4
45 4ne0 4 0
46 4 divccn 4 4 0 z z 4 K Cn K
47 44 45 46 mp2an z z 4 K Cn K
48 47 a1i U NrmCVec z z 4 K Cn K
49 oveq1 z = k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 z 4 = k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
50 12 12 42 43 48 49 cnmpt21 U NrmCVec x BaseSet U , y BaseSet U k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 J × t J Cn K
51 9 50 eqeltrd U NrmCVec P J × t J Cn K