Step |
Hyp |
Ref |
Expression |
1 |
|
dipcn.p |
|
2 |
|
dipcn.c |
|
3 |
|
dipcn.j |
|
4 |
|
dipcn.k |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
5 6 7 8 1
|
dipfval |
|
10 |
5 2
|
imsxmet |
|
11 |
3
|
mopntopon |
|
12 |
10 11
|
syl |
|
13 |
|
fzfid |
|
14 |
12
|
adantr |
|
15 |
4
|
cnfldtopon |
|
16 |
15
|
a1i |
|
17 |
|
ax-icn |
|
18 |
|
elfznn |
|
19 |
18
|
adantl |
|
20 |
19
|
nnnn0d |
|
21 |
|
expcl |
|
22 |
17 20 21
|
sylancr |
|
23 |
14 14 16 22
|
cnmpt2c |
|
24 |
14 14
|
cnmpt1st |
|
25 |
14 14
|
cnmpt2nd |
|
26 |
2 3 7 4
|
smcn |
|
27 |
26
|
adantr |
|
28 |
14 14 23 25 27
|
cnmpt22f |
|
29 |
2 3 6
|
vacn |
|
30 |
29
|
adantr |
|
31 |
14 14 24 28 30
|
cnmpt22f |
|
32 |
8 2 3 4
|
nmcnc |
|
33 |
32
|
adantr |
|
34 |
14 14 31 33
|
cnmpt21f |
|
35 |
4
|
sqcn |
|
36 |
35
|
a1i |
|
37 |
|
oveq1 |
|
38 |
14 14 34 16 36 37
|
cnmpt21 |
|
39 |
4
|
mulcn |
|
40 |
39
|
a1i |
|
41 |
14 14 23 38 40
|
cnmpt22f |
|
42 |
4 12 13 12 41
|
fsum2cn |
|
43 |
15
|
a1i |
|
44 |
|
4cn |
|
45 |
|
4ne0 |
|
46 |
4
|
divccn |
|
47 |
44 45 46
|
mp2an |
|
48 |
47
|
a1i |
|
49 |
|
oveq1 |
|
50 |
12 12 42 43 48 49
|
cnmpt21 |
|
51 |
9 50
|
eqeltrd |
|