Metamath Proof Explorer


Theorem diporthcom

Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X = BaseSet U
ipcl.7 P = 𝑖OLD U
Assertion diporthcom U NrmCVec A X B X A P B = 0 B P A = 0

Proof

Step Hyp Ref Expression
1 ipcl.1 X = BaseSet U
2 ipcl.7 P = 𝑖OLD U
3 fveq2 A P B = 0 A P B = 0
4 cj0 0 = 0
5 3 4 eqtrdi A P B = 0 A P B = 0
6 1 2 dipcj U NrmCVec A X B X A P B = B P A
7 6 eqeq1d U NrmCVec A X B X A P B = 0 B P A = 0
8 5 7 syl5ib U NrmCVec A X B X A P B = 0 B P A = 0
9 fveq2 B P A = 0 B P A = 0
10 9 4 eqtrdi B P A = 0 B P A = 0
11 1 2 dipcj U NrmCVec B X A X B P A = A P B
12 11 3com23 U NrmCVec A X B X B P A = A P B
13 12 eqeq1d U NrmCVec A X B X B P A = 0 A P B = 0
14 10 13 syl5ib U NrmCVec A X B X B P A = 0 A P B = 0
15 8 14 impbid U NrmCVec A X B X A P B = 0 B P A = 0