Metamath Proof Explorer


Theorem dipsubdi

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipsubdir.1 X=BaseSetU
ipsubdir.3 M=-vU
ipsubdir.7 P=𝑖OLDU
Assertion dipsubdi UCPreHilOLDAXBXCXAPBMC=APBAPC

Proof

Step Hyp Ref Expression
1 ipsubdir.1 X=BaseSetU
2 ipsubdir.3 M=-vU
3 ipsubdir.7 P=𝑖OLDU
4 id CXBXAXCXBXAX
5 4 3com13 AXBXCXCXBXAX
6 id BXCXAXBXCXAX
7 6 3com12 CXBXAXBXCXAX
8 1 2 3 dipsubdir UCPreHilOLDBXCXAXBMCPA=BPACPA
9 7 8 sylan2 UCPreHilOLDCXBXAXBMCPA=BPACPA
10 9 fveq2d UCPreHilOLDCXBXAXBMCPA=BPACPA
11 phnv UCPreHilOLDUNrmCVec
12 simpl UNrmCVecCXBXAXUNrmCVec
13 1 2 nvmcl UNrmCVecBXCXBMCX
14 13 3com23 UNrmCVecCXBXBMCX
15 14 3adant3r3 UNrmCVecCXBXAXBMCX
16 simpr3 UNrmCVecCXBXAXAX
17 1 3 dipcj UNrmCVecBMCXAXBMCPA=APBMC
18 12 15 16 17 syl3anc UNrmCVecCXBXAXBMCPA=APBMC
19 11 18 sylan UCPreHilOLDCXBXAXBMCPA=APBMC
20 1 3 dipcl UNrmCVecBXAXBPA
21 20 3adant3r1 UNrmCVecCXBXAXBPA
22 1 3 dipcl UNrmCVecCXAXCPA
23 22 3adant3r2 UNrmCVecCXBXAXCPA
24 cjsub BPACPABPACPA=BPACPA
25 21 23 24 syl2anc UNrmCVecCXBXAXBPACPA=BPACPA
26 1 3 dipcj UNrmCVecBXAXBPA=APB
27 26 3adant3r1 UNrmCVecCXBXAXBPA=APB
28 1 3 dipcj UNrmCVecCXAXCPA=APC
29 28 3adant3r2 UNrmCVecCXBXAXCPA=APC
30 27 29 oveq12d UNrmCVecCXBXAXBPACPA=APBAPC
31 25 30 eqtrd UNrmCVecCXBXAXBPACPA=APBAPC
32 11 31 sylan UCPreHilOLDCXBXAXBPACPA=APBAPC
33 10 19 32 3eqtr3d UCPreHilOLDCXBXAXAPBMC=APBAPC
34 5 33 sylan2 UCPreHilOLDAXBXCXAPBMC=APBAPC