Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipsubdir.1 | |
|
ipsubdir.3 | |
||
ipsubdir.7 | |
||
Assertion | dipsubdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipsubdir.1 | |
|
2 | ipsubdir.3 | |
|
3 | ipsubdir.7 | |
|
4 | id | |
|
5 | 4 | 3com13 | |
6 | id | |
|
7 | 6 | 3com12 | |
8 | 1 2 3 | dipsubdir | |
9 | 7 8 | sylan2 | |
10 | 9 | fveq2d | |
11 | phnv | |
|
12 | simpl | |
|
13 | 1 2 | nvmcl | |
14 | 13 | 3com23 | |
15 | 14 | 3adant3r3 | |
16 | simpr3 | |
|
17 | 1 3 | dipcj | |
18 | 12 15 16 17 | syl3anc | |
19 | 11 18 | sylan | |
20 | 1 3 | dipcl | |
21 | 20 | 3adant3r1 | |
22 | 1 3 | dipcl | |
23 | 22 | 3adant3r2 | |
24 | cjsub | |
|
25 | 21 23 24 | syl2anc | |
26 | 1 3 | dipcj | |
27 | 26 | 3adant3r1 | |
28 | 1 3 | dipcj | |
29 | 28 | 3adant3r2 | |
30 | 27 29 | oveq12d | |
31 | 25 30 | eqtrd | |
32 | 11 31 | sylan | |
33 | 10 19 32 | 3eqtr3d | |
34 | 5 33 | sylan2 | |