Metamath Proof Explorer


Theorem dipsubdi

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipsubdir.1 X = BaseSet U
ipsubdir.3 M = - v U
ipsubdir.7 P = 𝑖OLD U
Assertion dipsubdi U CPreHil OLD A X B X C X A P B M C = A P B A P C

Proof

Step Hyp Ref Expression
1 ipsubdir.1 X = BaseSet U
2 ipsubdir.3 M = - v U
3 ipsubdir.7 P = 𝑖OLD U
4 id C X B X A X C X B X A X
5 4 3com13 A X B X C X C X B X A X
6 id B X C X A X B X C X A X
7 6 3com12 C X B X A X B X C X A X
8 1 2 3 dipsubdir U CPreHil OLD B X C X A X B M C P A = B P A C P A
9 7 8 sylan2 U CPreHil OLD C X B X A X B M C P A = B P A C P A
10 9 fveq2d U CPreHil OLD C X B X A X B M C P A = B P A C P A
11 phnv U CPreHil OLD U NrmCVec
12 simpl U NrmCVec C X B X A X U NrmCVec
13 1 2 nvmcl U NrmCVec B X C X B M C X
14 13 3com23 U NrmCVec C X B X B M C X
15 14 3adant3r3 U NrmCVec C X B X A X B M C X
16 simpr3 U NrmCVec C X B X A X A X
17 1 3 dipcj U NrmCVec B M C X A X B M C P A = A P B M C
18 12 15 16 17 syl3anc U NrmCVec C X B X A X B M C P A = A P B M C
19 11 18 sylan U CPreHil OLD C X B X A X B M C P A = A P B M C
20 1 3 dipcl U NrmCVec B X A X B P A
21 20 3adant3r1 U NrmCVec C X B X A X B P A
22 1 3 dipcl U NrmCVec C X A X C P A
23 22 3adant3r2 U NrmCVec C X B X A X C P A
24 cjsub B P A C P A B P A C P A = B P A C P A
25 21 23 24 syl2anc U NrmCVec C X B X A X B P A C P A = B P A C P A
26 1 3 dipcj U NrmCVec B X A X B P A = A P B
27 26 3adant3r1 U NrmCVec C X B X A X B P A = A P B
28 1 3 dipcj U NrmCVec C X A X C P A = A P C
29 28 3adant3r2 U NrmCVec C X B X A X C P A = A P C
30 27 29 oveq12d U NrmCVec C X B X A X B P A C P A = A P B A P C
31 25 30 eqtrd U NrmCVec C X B X A X B P A C P A = A P B A P C
32 11 31 sylan U CPreHil OLD C X B X A X B P A C P A = A P B A P C
33 10 19 32 3eqtr3d U CPreHil OLD C X B X A X A P B M C = A P B A P C
34 5 33 sylan2 U CPreHil OLD A X B X C X A P B M C = A P B A P C